Clinical Trials Logo

Hepatoblastoma clinical trials

View clinical trials related to Hepatoblastoma.

Filter by:
  • Recruiting  
  • Page 1 ·  Next »

NCT ID: NCT05756660 Recruiting - Clinical trials for Ototoxicity, Drug-Induced

Sodium Thiosulfate Otoprotection During Salvage Cisplatin Therapy

Start date: March 1, 2023
Phase: Early Phase 1
Study type: Interventional

This study will attempt to demonstrate the efficacy of Sodium Thiosulfate (STS) in preventing hearing loss in patients re-treated with cisplatin-based therapy according to regimens Cisplatin and STS (regimen CS) and Cisplatin, STS and Vorinostat/SAHA (regimen CSS).

NCT ID: NCT05556642 Recruiting - Clinical trials for Refractory Hepatoblastoma

Relapsed and Refractory Hepatoblastoma: A Prospective Registry and Liver Tumor Research Consortium Initiative

Start date: September 7, 2022
Phase:
Study type: Observational [Patient Registry]

There are limited data regarding the biology and treatment of relapsed/refractory hepatoblastoma (rrHBL). This project provides the infrastructure for acquisition of biological specimens, imaging, and correlative clinical data to facilitate biology studies and characterization of rrHBL. This registry will collect clinical, demographic, and pathological data, specimens (as available) and imaging from patients with rrHBL, prospectively. Cases are identified through: 1. Existing clinical and/or cancer registry databases 2. Referrals from clinicians, surgeons, or pathologists 3. Families initiating contact with Registry staff directly

NCT ID: NCT05170282 Recruiting - Hepatoblastoma Clinical Trials

Deep Learning Magnetic Resonance Imaging Radiomics for Diagnostic Value of Hepatic Tumors in Infants

Start date: January 1, 2021
Phase:
Study type: Observational

Hepatic tumors in the perinatal period are associated with significant morbidity and mortality in affected patients. The conventional diagnostic tool, such as alpha-fetoprotein (AFP) shows limited value in diagnosis of infantile hepatic tumors. This retrospective-prospective study is aimed to evaluate the diagnostic efficiency of the deep learning system through analysis of magnetic resonance imaging (MRI) images before initial treatment.

NCT ID: NCT04897321 Recruiting - Melanoma Clinical Trials

B7-H3-Specific Chimeric Antigen Receptor Autologous T-Cell Therapy for Pediatric Patients With Solid Tumors (3CAR)

Start date: July 6, 2022
Phase: Phase 1
Study type: Interventional

3CAR is being done to investigate an immunotherapy for patients with solid tumors. It is a Phase I clinical trial evaluating the use of autologous T cells genetically engineered to express B7-H3-CARs for patients ≤ 21 years old, with relapsed/refractory B7-H3+ solid tumors. This study will evaluate the safety and maximum tolerated dose of B7-H3-CAR T cells.The purpose of this study is to find the maximum (highest) dose of B7-H3-CAR T cells that are safe to give to patients with B7-H3-positive solid tumors. Primary objective To determine the safety of one intravenous infusion of autologous, B7-H3-CAR T cells in patients (≤ 21 years) with recurrent/refractory B7-H3+ solid tumors after lymphodepleting chemotherapy Secondary objective To evaluate the antitumor activity of B7-H3-CAR T cells Exploratory objectives - To evaluate the tumor environment after treatment with B7-H3-CAR T cells - To assess the immunophenotype, clonal structure and endogenous repertoire of B7-H3-CAR T cells and unmodified T cells - To characterize the cytokine profile in the peripheral blood after treatment with B7-H3-CAR T cells

NCT ID: NCT04851119 Recruiting - Melanoma Clinical Trials

Tegavivint for the Treatment of Recurrent or Refractory Solid Tumors, Including Lymphomas and Desmoid Tumors

Start date: November 8, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial evaluates the highest safe dose, side effects, and possible benefits of tegavivint in treating patients with solid tumors that has come back (recurrent) or does not respond to treatment (refractory). Tegavivint interferes with the binding of beta-catenin to TBL1, which may help stop the growth of tumor cells by blocking the signals passed from one molecule to another inside a cell that tell a cell to grow.

NCT ID: NCT04634357 Recruiting - Liver Cancer Clinical Trials

ET140203 T Cells in Pediatric Subjects With Hepatoblastoma, HCN-NOS, or Hepatocellular Carcinoma

ARYA-2
Start date: July 19, 2022
Phase: Phase 1/Phase 2
Study type: Interventional

Open-label, dose escalation, multi-center, Phase I/II clinical trial to assess the safety/tolerability and determine the recommended Phase II Dose (RP2D) of ET140203 T-cells in pediatric subjects who are AFP-positive/HLA-A2-positive and have relapsed/refractory HB, HCN-NOS, or HCC.

NCT ID: NCT04478292 Recruiting - Hepatoblastoma Clinical Trials

A Multi-institutional Study for Treatment of Children With Newly Diagnosed Hepatoblastoma Using a Modified PHITT Strategy

Start date: March 1, 2021
Phase: Phase 3
Study type: Interventional

A Phase 3 multi-institutional study for treatment of children with newly diagnosed hepatoblastoma using a modified Paediatric Hepatic International Tumour Trial (PHITT) strategy incorporating a randomized assessment of sodium thiosulfate as auditory protection for children with localized disease, and response adapted therapy for patients with metastatic disease

NCT ID: NCT04337177 Recruiting - Solid Tumors Clinical Trials

Flavored, Oral Irinotecan VAL-413 (Orotecan®) Given With Temozolomide for Treatment of Recurrent Pediatric Solid Tumors

Start date: October 25, 2021
Phase: Phase 1
Study type: Interventional

A pilot pharmacokinetic trial to determine the safety and efficacy of a flavored, orally administered irinotecan VAL-413 (Orotecan®) given with temozolomide for treatment of recurrent pediatric solid tumors including but not limited to neuroblastoma, rhabdomyosarcoma, Ewing sarcoma, hepatoblastoma and medulloblastoma

NCT ID: NCT04308330 Recruiting - Neuroblastoma Clinical Trials

Vorinostat in Combination With Chemotherapy in Relapsed/Refractory Solid Tumors and CNS Malignancies

NYMC195
Start date: March 17, 2017
Phase: Phase 1
Study type: Interventional

Investigators are testing new experimental drug combinations such as the combination of vorinostat, vincristine, irinotecan, and temozolomide in the hopes of finding a drug that may be effective against tumors that have come back or that have not responded to standard therapy. The goals of this study are: - To find the highest safe dose of vorinostat that can be given together with vincristine, irinotecan, and temozolomide without causing severe side effects; - To learn what kind of side effects this four drug combination can cause; - To learn about the effects of vorinostat and the combination of vorinostat, vincristine, irinotecan, and temozolomide on specific molecules in tumor cells; - To determine whether the combination of vorinosat, vincristine, irinotecan, and temozolomide is a beneficial treatment.

NCT ID: NCT03959800 Recruiting - Clinical trials for Hepatocellular Carcinoma

Molecular Basis of Pediatric Liver Cancer

Start date: June 22, 2015
Phase:
Study type: Observational

The purpose of this retrospective and prospective project is to understand the molecular and genetic basis of liver cancer of childhood. Understanding the molecular and genetic bases of liver cancers can offer a better classification based on tumor biology, mechanisms and predisposition.