Heart Failure, Systolic Clinical Trial
Official title:
Physiological Effects of Lactate in Individuals With Chronic Heart Failure
Background: Lactate is continuously produced in the human body through two primary processes: glycolysis and microbial fermentation in the gastrointestinal tract. At rest, its concentration in the bloodstream typically ranges from 1 to 2 mmol/L. However, during periods of physical exertion or insufficient oxygen supply, such as during intense exercise, lactate levels significantly increase. Traditionally, lactate was perceived as a byproduct of anaerobic metabolism. Nevertheless, emerging research has illuminated its vital role as both a signaling molecule and a crucial energy source for vital organs like skeletal muscle, brain, and the heart. Objectives: The primary aim of this study is to investigate the impact of physiological levels of circulating lactate on the hemodynamics of individuals with chronic heart failure. This research seeks to understand how lactate affects the cardiovascular response in this specific patient population. Design and Endpoints: The study design employs a double-blind, randomized crossover approach involving 12 heart failure patients. Each participant will undergo two separate visits. Visit 1: Participants will receive a three-hour intravenous infusion of either a racemic (D/L) mixture of sodium lactate or an intravenous isotonic sodium chloride placebo, with a subsequent crossover to the opposite infusion on the same day. Visit 2: Similar to the first visit, participants will receive either an orally administered racemic (D/L) mixture of sodium lactate or an isocaloric, isovolumic oral placebo (maltodextrin), with a crossover to the opposite administration after three hours. The study's endpoints include cardiac output (primary), mixed venous saturation (SVO2), pulmonary wedge pressure, resting echocardiography (left ventricular ejection fraction and myocardial work efficiency), and measurements of vasoactive substances in blood samples. Methods: The study employs invasive Swan-Ganz monitoring to measure cardiac output, echocardiography, and frequent venous blood sample collections. These measurements and samples will be taken at specific intervals during the study visits. Intervention: To investigate the isolated hemodynamic and physiological effects of lactate, the study utilizes lactate infusion and ingestion to induce a state of hyperlactatemia within the physiological range. The intended dosages aim to stay within the physiological range, with no values expected to exceed 3-4 mmol/L.
Status | Recruiting |
Enrollment | 12 |
Est. completion date | September 30, 2024 |
Est. primary completion date | September 30, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Chronic heart failure - NYHA II-III - Left ventricular ejection fraction <40% - Negative urine-HCG for women with childbearing potential Exclusion Criteria: - Diabetes or HbA1c >48 mmol/mol - Significant cardiac valve disease - Severe stable angina pectoris - Severe comorbidity as judged by the investigator - Inability to give informed consent - Age <18 years - Other disease or treatment making subject unsuitable for study participation as judged by the investigator. |
Country | Name | City | State |
---|---|---|---|
Denmark | Aarhus University Hospital | Aarhus | Region Midtjylland |
Lead Sponsor | Collaborator |
---|---|
Henrik Wiggers |
Denmark,
Brooks GA. The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU. J Sport Health Sci. 2020 Sep;9(5):446-460. doi: 10.1016/j.jshs.2020.02.006. Epub 2020 Feb 21. — View Citation
Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S, Piper PK, Walker AK, Pedersen MH, Nohr MK, Pan J, Sinz CJ, Carrington PE, Akiyama TE, Jones RM, Tang C, Ahmed K, Offermanns S, Egerod KL, Zigman JM, Schwartz TW. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab. 2013 Sep 4;2(4):376-92. doi: 10.1016/j.molmet.2013.08.006. eCollection 2013. — View Citation
Goodwin ML, Harris JE, Hernandez A, Gladden LB. Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol. 2007 Jul;1(4):558-69. doi: 10.1177/193229680700100414. — View Citation
Johannsson E, Lunde PK, Heddle C, Sjaastad I, Thomas MJ, Bergersen L, Halestrap AP, Blackstad TW, Ottersen OP, Sejersted OM. Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation. 2001 Aug 7;104(6):729-34. doi: 10.1161/hc3201.092286. — View Citation
Leverve XM, Boon C, Hakim T, Anwar M, Siregar E, Mustafa I. Half-molar sodium-lactate solution has a beneficial effect in patients after coronary artery bypass grafting. Intensive Care Med. 2008 Oct;34(10):1796-803. doi: 10.1007/s00134-008-1165-x. Epub 2008 Jun 18. — View Citation
Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J, Sutton SW, Li X, Yun SJ, Mirzadegan T, Mazur C, Kamme F, Lovenberg TW. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem. 2009 Jan 30;284(5):2811-2822. doi: 10.1074/jbc.M806409200. Epub 2008 Dec 1. — View Citation
Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, Rabinowitz JD, Frankel DS, Arany Z. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science. 2020 Oct 16;370(6514):364-368. doi: 10.1126/science.abc8861. — View Citation
Nalos M, Leverve X, Huang S, Weisbrodt L, Parkin R, Seppelt I, Ting I, Mclean A. Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: a pilot randomised controlled clinical trial. Crit Care. 2014 Mar 25;18(2):R48. doi: 10.1186/cc13793. — View Citation
Nielsen R, Moller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, Harms HJ, Frokiaer J, Eiskjaer H, Jespersen NR, Mellemkjaer S, Lassen TR, Pryds K, Botker HE, Wiggers H. Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients. Circulation. 2019 Apr 30;139(18):2129-2141. doi: 10.1161/CIRCULATIONAHA.118.036459. — View Citation
Offermanns S. Hydroxy-Carboxylic Acid Receptor Actions in Metabolism. Trends Endocrinol Metab. 2017 Mar;28(3):227-236. doi: 10.1016/j.tem.2016.11.007. Epub 2017 Jan 10. — View Citation
Pedersen MGB, Sondergaard E, Nielsen CB, Johannsen M, Gormsen LC, Moller N, Jessen N, Rittig N. Oral lactate slows gastric emptying and suppresses appetite in young males. Clin Nutr. 2022 Feb;41(2):517-525. doi: 10.1016/j.clnu.2021.12.032. Epub 2021 Dec 24. — View Citation
Vincent JL, Quintairos E Silva A, Couto L Jr, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016 Aug 13;20(1):257. doi: 10.1186/s13054-016-1403-5. — View Citation
* Note: There are 12 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Cardiac output Cardiac output | Unit: L/min.
It represents the amount of blood that the heart pumps out of the left ventricle per minute. |
Two visits of six hours each separated by a one-week washout period. Thus, outcome measures for the intravenous route will be assessed at week one, and outcome measures for the oral route will be assessed at week 2. | |
Secondary | Mixed venous saturation (SVO2) | Unit: %
It represents the percentage of oxygen saturation in the blood as it returns to the right side of the heart after circulating through the body's tissues. |
Two visits of six hours each separated by a one-week washout period. Thus, outcome measures for the intravenous route will be assessed at week one, and outcome measures for the oral route will be assessed at week 2. | |
Secondary | Pulmonary wedge pressure | Unit: mmHg
It reflects the pressure within the left atrium and the left ventricle of the heart, and it is an important indicator of left ventricular preload. |
Two visits of six hours each separated by a one-week washout period. Thus, outcome measures for the intravenous route will be assessed at week one, and outcome measures for the oral route will be assessed at week 2. | |
Secondary | Left ventricular ejection fraction | Unit: %
It is a measure of the percentage of blood that is pumped out of the left ventricle with each heartbeat. |
Two visits of six hours each separated by a one-week washout period. Thus, outcome measures for the intravenous route will be assessed at week one, and outcome measures for the oral route will be assessed at week 2. | |
Secondary | Global longitudinal strain | Unit: %
It quantifies the deformation or shortening of the heart muscle fibers along the longitudinal (lengthwise) axis of the left ventricle during the cardiac cycle. |
Two visits of six hours each separated by a one-week washout period. Thus, outcome measures for the intravenous route will be assessed at week one, and outcome measures for the oral route will be assessed at week 2. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Withdrawn |
NCT03227393 -
The Effect of Yoga on Cardiac Sympathetic Innervation Evaluated by I-123 mIBG
|
N/A | |
Recruiting |
NCT04528004 -
Mechanistic Studies of Nicotinamide Riboside in Human Heart Failure
|
Early Phase 1 | |
Recruiting |
NCT04703842 -
Modulation of SERCA2a of Intra-myocytic Calcium Trafficking in Heart Failure With Reduced Ejection Fraction
|
Phase 1/Phase 2 | |
Recruiting |
NCT04522609 -
Electrostimulation of Skeletal Muscles in Patients Listed for a Heart Transplant
|
N/A | |
Completed |
NCT05475028 -
Network Medicine Approaches to Classify Heart Failure With PReserved Ejection Fraction by Signatures of DNA Methylation and Point-of-carE Risk calculaTors (PRESMET)
|
||
Not yet recruiting |
NCT06240403 -
Digoxin and Senolysis in Heart Failure and Diabetes Mellitus
|
Phase 2 | |
Not yet recruiting |
NCT05988749 -
Digital Remote Home Monitoring for Heart Failure
|
N/A | |
Recruiting |
NCT04950218 -
The Psoriasis Echo Study
|
||
Suspended |
NCT04701112 -
Acute Hemodynamic Effects of Pacing the His Bundle in Heart Failure
|
N/A | |
Completed |
NCT03305692 -
ECG Belt vs. Echocardiographic Optimization of CRT
|
N/A | |
Recruiting |
NCT05933083 -
MCNAIR Study: coMparative effeCtiveness of iN-person and teleheAlth cardIac Rehabilitation
|
N/A | |
Enrolling by invitation |
NCT03903107 -
The Fluoroless-CSP Trial Using Electroanatomic Mapping
|
N/A | |
Withdrawn |
NCT04872959 -
TRANSFORM Heart Failure With Reduced Ejection Fraction
|
N/A | |
Completed |
NCT02920918 -
Treatment of Diabetes in Patients With Systolic Heart Failure
|
Phase 4 | |
Completed |
NCT02334891 -
Kyoto Congestive Heart Failure Study
|
||
Recruiting |
NCT03553303 -
Pharmacodynamic Effects of Sacubitril/Valsartan on Natriuretic Peptides, Angiotensin and Neprilysin
|
Phase 4 | |
Recruiting |
NCT04083690 -
Multi-lead ECG to Effectively Optimize Resynchronization Devices: New CRT Recipients
|
N/A | |
Recruiting |
NCT03830957 -
Efficacy and Safety of Ivabradine to Reduce Heart Rate Prior to Coronary CT-angiography in Advanced Heart Failure: Comparison With β-Blocker
|
N/A | |
Completed |
NCT03351283 -
Effect of Sodium Intake on Brain Natriuretic Peptide Levels in Patients With Heart Failure
|
N/A | |
Recruiting |
NCT02960685 -
Telesonography for Visually Estimating Ejection Fraction
|
N/A |