Health Behavior Clinical Trial
— EP-PTSDOfficial title:
Wearable Emotion Prosthetics for Post Traumatic Stress Disorder
Verified date | January 2022 |
Source | University of Pittsburgh |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Involuntary stress reactions including hyper-reactivity and dissociation are key diagnostic features of many psychiatric disorders, are difficult to treat, and predict poor outcomes in conventional and neurobehavioral interventions. Here, we evaluate the extent to which a novel intervention, Tuned Vibroacoustic Stimulation (TVS), capitalizing on a preserved neurocircuitry for sympathetic and parasympathetic system activity can be used to modify arousal responses, overriding otherwise prepotent negative stress reactions. PTSD has been characterized by dysregulated responses to stress as a result of severe acute or chronic trauma resulting in significantly impaired functioning, quality of life, and morbidity/mortality. Physiologically, PTSD severity has been associated with elevated sympathetic tone and low heart rate variability suggesting that parasympathetic tone is suppressed. Lower heart rate variability specifically, as a measure of parasympathetic tone, is closely associated with impaired performance and resilience. In our first study (in review), we showed that in some individuals, TVS is associated with increased heart rate variability and performance under stress along with reduced subjective stress. These results suggest that TVS could provide some therapeutic benefit in PTSD. N=100 individuals with mild-moderate PTSD (as assessed by PCL-5/CAP5), at least half of which are military Veterans, will be assessed physiologically during active interventions. Mechanisms of attentional focus on cognitive and emotional stimuli will be assessed. Participants will also have a real-world intervention to determine if TVS helps alleviate stress, symptoms, and medication burden in the real world when stress has been identified. Success will suggest a new intervention pathway for a traditionally treatment-resistant dimension of psychopathology.
Status | Completed |
Enrollment | 16 |
Est. completion date | December 18, 2021 |
Est. primary completion date | December 18, 2021 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 58 Years |
Eligibility | Inclusion Criteria: - Male/female who are 18 - 58 years of age - For PTSD participants, must meet current DSM-V criteria for PTSD based on the PCL-5 (Score > 33) and MINI PTSD Scale (administered in lab). - If taking psychoactive medications, must be on a stable regimen for 3 weeks or more. - Must have a functioning smartphone with Apple iOS or Android Exclusion Criteria: - Refusal or inability to provide informed consent - Current suicidal or homicidal ideation with intent and/or plan that, in the judgment of the investigator, should be the focus of treatment. - Current or recent (within the last 8 weeks) physically aggressive behavior. - Meets current DSM-V criteria for substance dependence ((serious substance use in DSM-V parlance, not in remission) except nicotine and caffeine), traumatic brain injury, bipolar affective disorder, schizophrenia or any psychotic disorder. - Has unstable or serious medical illness, including history of stroke, epileptic disorder, or unstable cardiac disease, that would interfere with participation in treatment. - Taking medications that could affect thinking which must be taken on the day of testing, or dependence on psychoactive drugs (prescription or non-prescription) that could affect thinking. That is, participants need to be able to think clearly to complete the proposed information processing tasks. And they need to be able to learn to be able to make use of the intervention. Examples of drugs which could affect performance on cognitive tasks or the administered physiological measures include beta-blockers, benzodiazepines, antipsychotics, stimulants (except for treatment of ADD/ADHD), narcotics, and anti--Parkinsonian drugs. - Severe cognitive impairment or severe trauma - Unable to comprehend or communicate in English, and unable to complete questionnaires written in English. - Having any eye problems or difficulties in corrected vision or hearing, including poor color vision - Having a North American Adult Reading Test (NAART) equivalent FSIQ < 85 - Severe or poorly controlled concurrent medical disorders or require medication that could cause negative thinking Specific Exclusions for acoustic vibration include: -- Any electrical implant (pacemaker, vagus nerve stimulator, etc). |
Country | Name | City | State |
---|---|---|---|
United States | Western Psychiatric Institute and Clinic | Pittsburgh | Pennsylvania |
Lead Sponsor | Collaborator |
---|---|
University of Pittsburgh |
United States,
Azam MA, Katz J, Mohabir V, Ritvo P. Individuals with tension and migraine headaches exhibit increased heart rate variability during post-stress mindfulness meditation practice but a decrease during a post-stress control condition - A randomized, controll — View Citation
Brown KW, Ryan RM. The benefits of being present: mindfulness and its role in psychological well-being. J Pers Soc Psychol. 2003 Apr;84(4):822-48. — View Citation
Carlson LE, Brown KW. Validation of the Mindful Attention Awareness Scale in a cancer population. J Psychosom Res. 2005 Jan;58(1):29-33. — View Citation
Cipriano G Jr, Neder JA, Umpierre D, Arena R, Vieira PJ, Chiappa AM, Ribeiro JP, Chiappa GR. Sympathetic ganglion transcutaneous electrical nerve stimulation after coronary artery bypass graft surgery improves femoral blood flow and exercise tolerance. J Appl Physiol (1985). 2014 Sep 15;117(6):633-8. doi: 10.1152/japplphysiol.00993.2013. Epub 2014 Aug 7. — View Citation
Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC, Duncan GH. Distributed processing of pain and vibration by the human brain. J Neurosci. 1994 Jul;14(7):4095-108. — View Citation
Creswell JD. Mindfulness Interventions. Annu Rev Psychol. 2017 Jan 3;68:491-516. doi: 10.1146/annurev-psych-042716-051139. Epub 2016 Sep 28. Review. — View Citation
Dallman MF, Pecoraro NC, La Fleur SE, Warne JP, Ginsberg AB, Akana SF, Laugero KC, Houshyar H, Strack AM, Bhatnagar S, Bell ME. Glucocorticoids, chronic stress, and obesity. Prog Brain Res. 2006;153:75-105. Review. — View Citation
Dittrich A. The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry. 1998 Jul;31 Suppl 2:80-4. Review. — View Citation
Fang J, Rong P, Hong Y, Fan Y, Liu J, Wang H, Zhang G, Chen X, Shi S, Wang L, Liu R, Hwang J, Li Z, Tao J, Wang Y, Zhu B, Kong J. Transcutaneous Vagus Nerve Stimulation Modulates Default Mode Network in Major Depressive Disorder. Biol Psychiatry. 2016 Feb 15;79(4):266-73. doi: 10.1016/j.biopsych.2015.03.025. Epub 2015 Apr 2. — View Citation
Fredrickson BL, Branigan C. Positive emotions broaden the scope of attention and thought-action repertoires. Cogn Emot. 2005 May 1;19(3):313-332. — View Citation
Fredrickson BL, Joiner T. Positive emotions trigger upward spirals toward emotional well-being. Psychol Sci. 2002 Mar;13(2):172-5. — View Citation
Fredrickson BL, Levenson RW. Positive Emotions Speed Recovery from the Cardiovascular Sequelae of Negative Emotions. Cogn Emot. 1998 Mar 1;12(2):191-220. — View Citation
Fredrickson BL, Tugade MM, Waugh CE, Larkin GR. What good are positive emotions in crises? A prospective study of resilience and emotions following the terrorist attacks on the United States on September 11th, 2001. J Pers Soc Psychol. 2003 Feb;84(2):365-76. — View Citation
Fredrickson BL. The broaden-and-build theory of positive emotions. Philos Trans R Soc Lond B Biol Sci. 2004 Sep 29;359(1449):1367-78. Review. — View Citation
Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol. 2007 Feb;74(2):263-85. Epub 2006 Nov 1. Review. — View Citation
Jonas DE, Cusack K, Forneris CA, Wilkins TM, Sonis J, Middleton JC, Feltner C, Meredith D, Cavanaugh J, Brownley KA, Olmsted KR, Greenblatt A, Weil A, Gaynes BN. Psychological and Pharmacological Treatments for Adults With Posttraumatic Stress Disorder (PTSD) [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013 Apr. Available from http://www.ncbi.nlm.nih.gov/books/NBK137702/ — View Citation
Kabat-Zinn J, Massion AO, Kristeller J, Peterson LG, Fletcher KE, Pbert L, Lenderking WR, Santorelli SF. Effectiveness of a meditation-based stress reduction program in the treatment of anxiety disorders. Am J Psychiatry. 1992 Jul;149(7):936-43. — View Citation
Kabat-Zinn J. An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: theoretical considerations and preliminary results. Gen Hosp Psychiatry. 1982 Apr;4(1):33-47. — View Citation
Kibler JL, Tursich M, Ma M, Malcolm L, Greenbarg R. Metabolic, autonomic and immune markers for cardiovascular disease in posttraumatic stress disorder. World J Cardiol. 2014 Jun 26;6(6):455-61. doi: 10.4330/wjc.v6.i6.455. Review. — View Citation
Kok BE, Coffey KA, Cohn MA, Catalino LI, Vacharkulksemsuk T, Algoe SB, Brantley M, Fredrickson BL. How positive emotions build physical health: perceived positive social connections account for the upward spiral between positive emotions and vagal tone. Psychol Sci. 2013 Jul 1;24(7):1123-32. doi: 10.1177/0956797612470827. Epub 2013 May 6. Erratum in: Psychol Sci. 2016 Jun;27(6):931. — View Citation
Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001 Sep;16(9):606-13. — View Citation
Lehrer PM, Gevirtz R. Heart rate variability biofeedback: how and why does it work? Front Psychol. 2014 Jul 21;5:756. doi: 10.3389/fpsyg.2014.00756. eCollection 2014. — View Citation
Lomas T, Ivtzan I, Fu CH. A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neurosci Biobehav Rev. 2015 Oct;57:401-10. doi: 10.1016/j.neubiorev.2015.09.018. Epub 2015 Oct 9. Review. — View Citation
Ludwig DS, Kabat-Zinn J. Mindfulness in medicine. JAMA. 2008 Sep 17;300(11):1350-2. doi: 10.1001/jama.300.11.1350. — View Citation
Mohan A, Sharma R, Bijlani RL. Effect of meditation on stress-induced changes in cognitive functions. J Altern Complement Med. 2011 Mar;17(3):207-12. doi: 10.1089/acm.2010.0142. Epub 2011 Mar 9. — View Citation
Ong AD, Bergeman CS, Bisconti TL, Wallace KA. Psychological resilience, positive emotions, and successful adaptation to stress in later life. J Pers Soc Psychol. 2006 Oct;91(4):730-49. — View Citation
Salleh MR. Life event, stress and illness. Malays J Med Sci. 2008 Oct;15(4):9-18. — View Citation
Schofield TP, Creswell JD, Denson TF. Brief mindfulness induction reduces inattentional blindness. Conscious Cogn. 2015 Dec;37:63-70. doi: 10.1016/j.concog.2015.08.007. Epub 2015 Aug 28. — View Citation
Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59 Suppl 20:22-33;quiz 34-57. Review. — View Citation
Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev. 2005 May;4(2):141-94. Review. — View Citation
Takahashi I, Ohashi H, Yokoyama K. Optimum arousal level preservation system using biosignals. J Hum Ergol (Tokyo). 2011 Dec;40(1-2):119-28. — View Citation
Teasdale JD, Segal ZV, Williams JM, Ridgeway VA, Soulsby JM, Lau MA. Prevention of relapse/recurrence in major depression by mindfulness-based cognitive therapy. J Consult Clin Psychol. 2000 Aug;68(4):615-23. — View Citation
Tugade MM, Fredrickson BL. Resilient individuals use positive emotions to bounce back from negative emotional experiences. J Pers Soc Psychol. 2004 Feb;86(2):320-33. — View Citation
Uttl B. North American Adult Reading Test: age norms, reliability, and validity. J Clin Exp Neuropsychol. 2002 Dec;24(8):1123-37. — View Citation
Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988 Jun;54(6):1063-70. — View Citation
Watts BV, Schnurr PP, Mayo L, Young-Xu Y, Weeks WB, Friedman MJ. Meta-analysis of the efficacy of treatments for posttraumatic stress disorder. J Clin Psychiatry. 2013 Jun;74(6):e541-50. doi: 10.4088/JCP.12r08225. — View Citation
Westbrook C, Creswell JD, Tabibnia G, Julson E, Kober H, Tindle HA. Mindful attention reduces neural and self-reported cue-induced craving in smokers. Soc Cogn Affect Neurosci. 2013 Jan;8(1):73-84. doi: 10.1093/scan/nsr076. Epub 2011 Nov 22. — View Citation
* Note: There are 37 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in symptom ratings from pre- to post- | Subjective affect / symptom ratings will be obtained daily. Spline fitting will be used to create a smoothed estimate of trajectory, the beginning and end points of which will be compared. | Change in symptom ratings over the approximately two weeks of the acute intervention (pre- to post- assessment) | |
Primary | Change in resting Heart Rate Variability (HRV) from pre- to post- | HRV, an index of parasympathetic reactivity, will be obtained throughout the day during the study. Increased HRV indicates increased parasympathetic reactivity, which suggests an increased physiological indicator of emotion regulation. Spline fitting will be used to create a smoothed estimate of trajectory, the beginning and end points of which will be compared. | HRV will be measured during the entire study which is two weeks | |
Secondary | Change in Heart Rate Variability (HRV) during information processing tasks (composite) | HRV, an index of parasympathetic reactivity, will be obtained during laboratory information processing tasks (paced auditory serial attention, emotional picture viewing). Increased HRV indicates increased parasympathetic reactivity, which suggests an increased physiological indicator of emotion regulation. | HRV will be measured during the approximately 1 hour of information processing tasks, which will be administered approximately 2 weeks apart, at the pre- and post- intervention assessment visits. | |
Secondary | Galvanic skin response (GSR) during information processing tasks (composite) | GSR, index of sympathetic reactivity, will be obtained during lab tasks before and after the intervention. Decreased GSR indicates decreased sympathetic reactivity, which suggests an increased physiological indicator of emotion regulation. | GSR will be measured during the approximately 1 hour of information processing tasks, which will be administered approximately 2 weeks apart, at the pre- and post- intervention assessment visits. | |
Secondary | prefrontal gamma band EEG during information processing tasks (composite) | prefrontal gamma band EEG will be obtained during lab information processing tasks. Increased prefrontal gamma band EEG suggests an increased physiological indicator of emotion regulation. | EEG will be measured during the approximately 1 hour of information processing tasks, which will be administered approximately 2 weeks apart, at the pre- and post- intervention assessment visits. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05009251 -
Using Explainable AI Risk Predictions to Nudge Influenza Vaccine Uptake
|
N/A | |
Recruiting |
NCT04356924 -
Psychological Treatment to Support the Consequences of Cognitive Impairment
|
N/A | |
Completed |
NCT05509049 -
Precision Nudging Drives Wellness Visit Attendance at Scale
|
N/A | |
Completed |
NCT03904992 -
Intervention With a Progressive Web App for the Promotion of Healthy Habits in Preschoolers
|
N/A | |
Completed |
NCT05509270 -
Efficacy of Communication Modalities for Promoting Flu Shots
|
N/A | |
Completed |
NCT03167372 -
Pilot Comparison of N-of-1 Trials of Light Therapy
|
N/A | |
Completed |
NCT03081520 -
Affective Responses Following Aerobic Exercise With Different Intensities
|
N/A | |
Completed |
NCT05012163 -
Lottery Incentive Nudges to Increase Influenza Vaccinations
|
N/A | |
Completed |
NCT03982095 -
Survey on Lifestyle, Perceived Barriers and Development of Change in Patients With Prostate Cancer
|
||
Recruiting |
NCT06467058 -
Convergent Validity of DABQ Questionnaire
|
N/A | |
Completed |
NCT02777086 -
Sustainable HIV Risk Reduction Strategies for Probationers
|
N/A | |
Completed |
NCT02996864 -
Location-based Smartphone Technology to Guide College Students Healthy Choices Ph II
|
N/A | |
Not yet recruiting |
NCT06071130 -
Emotion, Aging, and Decision Making
|
N/A | |
Active, not recruiting |
NCT04152824 -
Readiness Supportive Leadership Training
|
N/A | |
Active, not recruiting |
NCT05541653 -
The IGNITE Study on Concentrated Investment in Black Neighborhoods
|
N/A | |
Completed |
NCT03875768 -
Nourish: A Digital Health Program to Promote the DASH Eating Plan Among Adults With High Blood Pressure
|
N/A | |
Completed |
NCT04089020 -
Walking to School Supports
|
N/A | |
Completed |
NCT03646903 -
Reducing Help-Seeking Stigma in Young Adults at Elevated Suicide Risk
|
N/A | |
Completed |
NCT03548077 -
POWERPLAY: Promoting Men's Health at Work
|
N/A | |
Recruiting |
NCT05249465 -
Spark: Finding the Optimal Tracking Strategy for Weight Loss in a Digital Health Intervention
|
N/A |