Clinical Trials Logo

Glioma clinical trials

View clinical trials related to Glioma.

Filter by:

NCT ID: NCT01305122 Terminated - OMS Grade II Glioma Clinical Trials

Tumor and Treatments Impact on Neurocognitive Functions and Quality of Life of Patients With OMS Grade II Glioma

Start date: February 2011
Phase: N/A
Study type: Interventional

This is a multicenter prospective study:2 independant cohorts of patients with OMS grade II glioma will be followed during 5 years. - cohort A: patients in first-line treatment (surgery, radiotherapy or chemotherapy) - cohort B: patients with disease simple monitoring. The primary endpoint is to evaluate the impact of tumor and treatments on neurocognitive functions and quality of life, using validate and standard tests.

NCT ID: NCT01281982 Terminated - Clinical trials for Glioblastoma Multiforme

(11C)dLop as a Marker of P-Glycoprotein Function in Patients With Gliomas

Start date: January 13, 2011
Phase:
Study type: Observational

Background: - The blood-brain barrier helps to protect the central nervous system (brain and spinal cord) from harmful toxins, but also prevents potentially useful chemotherapy from reaching brain tumors. The barrier is formed by tight connections between blood vessel cells and molecules found on the surface of brain blood vessels such as Permeability-glycoprotein (Pgp). Pgp may influence whether patients with brain tumors known as gliomas respond to chemotherapy and what side effects they may experience. The compound (11C)N-desmethyl-loperamide ((11C)dLop) reacts to Pgp molecules, and therefore may be used with positron emission tomography (PET) imaging to study the blood brain barrier. Objectives: - To study the ability of PET imaging with (11C)dLop to evaluate the blood brain barrier in brain tumor patients. Eligibility: - Individuals at least 18 years of age who have a brain tumor with characteristics that may be imaged with techniques such as magnetic resonance imaging (MRI) andPET. Design: - Participants will be screened with a full physical examination and medical history, blood and urine tests, and tumor imaging studies (fluorodeoxyglucose PET and MRI scans with contrast agent). - The (11C)dLop scan will take 1 hour to perform. Participants will be asked to return for blood and urine tests approximately 24 hours after the PET scan. - Participants will have followup visits at least every 4 months by repeating a complete history and physical exam and brain MRI. Participants may have repeat scans with (11C)dLop at various points in the course of cancer treatment, but will not have these scans more than twice in a 12-month period. - Participants will be followed for as long as possible during treatment to see if imaging with (11C)dLop correlates with response to the treatments.

NCT ID: NCT01269411 Terminated - Adult Glioblastoma Clinical Trials

RO4929097 in Treating Patients With Recurrent Invasive Gliomas

Start date: July 2011
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of RO4929097 in treating patients with recurrent invasive gliomas. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth

NCT ID: NCT01263821 Terminated - Glioma Clinical Trials

Image Guided Therapy in the Treatment of Gliomas

Start date: August 2009
Phase: N/A
Study type: Interventional

RATIONALE: New imaging techniques using magnetic resonance imaging give better tumor definition, thus may lead to better tumor targeting and avoid damaging critical parts of normal brain. PURPOSE: This phase I/II trial is studying how well image-guided therapy works in treating patients with newly diagnosed intracranial glioma.

NCT ID: NCT01251913 Terminated - Gliomas Clinical Trials

A Pilot Study of Inpatient Hospice With Procurement of Brain Tumor Tissue on Expiration for Research Purposes

Start date: November 12, 2010
Phase:
Study type: Observational

Background: - An important new area of brain tumor research is the development of tumor and brain stem cell lines. Successful growth of these cell lines requires obtaining large volumes of fresh tumor and brain tissue, which is best accomplished by harvesting whole brains from recently deceased patients. These cell lines will help researchers understand how these tumors develop and will also help identify new targets for treatment. Researchers are interested in conducting a pilot study of planned inpatient hospice care with timely brain tumor tissue harvest at the time of death. Objectives: - To provide high-quality end of life inpatient hospice care for patients with untreatable brain tumors. - To procure brain and tumor tissue shortly after time of death in order to derive viable tumor and neural stem cell lines for research purposes. Eligibility: - Individuals at least 18 years of age who have an untreatable primary brain or central nervous system tumor, are able to give informed consent (either their own or through a designated power of attorney), and have agreed to a Do Not Resuscitate order and Consent for Autopsy as part of the end-of-life care plan. - HIV-positive individuals or those suspected of having infectious cerebritis are not eligible because of the potential for contamination of brain tissue. Design: - Participants will be enrolled in inpatient hospice admission to the National Institutes of Health Clinical Center either from home or from an outside hospital once a study investigator estimates an expected survival of less than 2 weeks. - Participants will receive palliative care at the Clinical Center. Care will be tailored to each participant depending on the information provided in the individual's end-of-life care plan. - Supportive medications such as antiseizure medications and pain relievers will be administered as appropriate. - At the time of death, researchers will follow standard procedures for notifying next of kin and will collect brain tissue and tumor samples from the deceased. - Following tissue collection, the deceased will be released for autopsy and funeral procedures.

NCT ID: NCT01234805 Terminated - Adult Glioblastoma Clinical Trials

Yoga Therapy in Treating Patients With Malignant Brain Tumors

Start date: December 2010
Phase: N/A
Study type: Interventional

This clinical trial studies yoga therapy in treating patients with malignant brain tumors. Yoga therapy may improve the quality of life of patients with brain tumors

NCT ID: NCT01229644 Terminated - Glioma Clinical Trials

Study of Crenolanib, a Selective and Potent Inhibitor of PDGFR, for the Treatment of Adult Gliomas

Start date: April 2011
Phase: Phase 2
Study type: Interventional

The purpose of this study is to evaluate the antitumor efficacy of crenolanib (CP-868,596) in patients with recurrent high grade glioma and in patients with low grade glioma.

NCT ID: NCT01182350 Terminated - Clinical trials for Diffuse Intrinsic Pontine Glioma

Molecularly Determined Treatment of Diffuse Intrinsic Pontine Gliomas (DIPG)

Start date: September 2011
Phase: Phase 2
Study type: Interventional

Diagnosis of diffuse intrinsic pontine glioma (DIPG) for decades has relied on imaging studies and clinical findings. Histologic confirmation has been absent with surgical biopsy of brainstem tumors not believed to have acceptable safety. The prognosis of DIPG has remained quite poor and novel therapeutic strategies are needed. This DIPG Biology and Treatment Study (DIPG-BATS) study incorporates a surgical biopsy at presentation using strict preoperative neurosurgical planning and stratifies participants to receive FDA-approved agents chosen on the basis of specific biologic targets. This is the first prospective national clinical trial to examine the feasibility and safety of incorporating surgical biopsy into potential treatment strategies for children with DIPG.

NCT ID: NCT01148966 Terminated - Adult Glioblastoma Clinical Trials

Aminolevulinic Acid During Surgery in Treating Patients With Malignant Brain Tumors

Start date: June 2010
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of aminolevulinic acid during surgery in treating patients with malignant brain tumors. Aminolevulinic acid becomes active when it is exposed to a certain kind of light and may help doctors find and remove tumor cells during surgery

NCT ID: NCT01116661 Terminated - Glioma Clinical Trials

Safety Study of Aminolevulinic Acid (ALA) to Enhance Visualization and Resection of Tumors of the Brain

ALA
Start date: August 2010
Phase: Phase 2
Study type: Interventional

The prodrug, 5-Aminolevulinic acid (ALA), has been shown to lead to intracellular accumulation of fluorescent porphyrins in high grade malignant gliomas in the brain. On imaging, this accumulation of fluorescent porphyrins helps delineate tumor borders, resulting in the surgeon being better able to visualize and thus able to make a complete, or near-complete resection of the tumor.