Clinical Trials Logo

Clinical Trial Summary

Eye health is of great importance for quality of life. Some eye diseases can progress and cause permanent damage up to vision loss if they are not treated early. Therefore, it is of great importance to have regular eye examinations and to detect possible eye diseases before they progress. Healthy people should also undergo eye screening once a year, and those with any complaints regarding eye health should be examined. With the advancing technology, Artificial Intelligence (AI) has begun to play a significant role in the healthcare sector. Retinal diseases, serious health problems resulting from damage to the back part of the eye's retina, include conditions such as retinopathy, macular degeneration, and glaucoma. Artificial intelligence, with its visual recognition and analysis capabilities, holds great potential in the early diagnosis of retinal diseases. AI-based diagnosis of retinal diseases typically involves the use of specialized algorithms that analyze retinal images. These algorithms identify abnormal features in the eye, providing doctors with a quick and accurate diagnosis. EyeCheckup v2.0 will diagnose glaucoma suspicion, severe glaucoma suspicion, age-related macular degeneration diagnosis, RVO diagnosis, diabetic retinopathy diagnosis and stage, presence/absence of DME suspicion and other retinal diseases from fundus images. This study is designed to assess the safety and efficacy of EyeCheckup v2.0. The study is a single center study to determine the sensitivity and specificity of EyeCheckup to retinal and optic disc diseases. EyeCheckup v2.0 is an automated software device that is designed to analyze ocular fundus digital color photographs taken in frontline primary care settings in order to quickly screen.


Clinical Trial Description

According to the World Health Organization's worldwide report published in 2020, at least 2.2 billion people worldwide currently have visual impairment, and at least 1 billion of them have a visual impairment that can be prevented or has not yet been addressed. The world faces significant eye health challenges, including inequalities in the coverage and quality of eye care prevention, treatment, and rehabilitation services, a lack of trained eye care providers, and poor integration of eye care services into health systems, among others. It is known that more than 80% of all visual disorders can be prevented or treated. An eye fundus examination must be performed by a retina specialist to make a correct diagnosis, but people only consult an ophthalmologist when they feel any discomfort. While typically symptoms progress so much that once a disease occurs, resulting in expensive treatments and surgeries, often the damage is irreversible, resulting in visual impairment or even permanent vision loss. Artificial intelligence is used to study and develop theories and methods that can help simulate and extend human intelligence, which have been used in many fields of research such as automatic diagnosis and medicine. In recent years, the intersection of artificial intelligence (AI) technology and modern medicine has made effective and rapid disease screening possible. EyeCheckup is an automated software device designed to analyze digital color photographs of the ocular fundus to quickly screen for retinal and optic disc diseases. The main aim of the research is to evaluate the performance of the automatic screening algorithm to detect steerable retinal and optic disc diseases based on color fundus images and to determine its sensitivity and specificity towards possible diseases. For the clinical validation of the system, the images will be evaluated by ophthalmologists and the results will be compared with the artificial intelligence algorithm. After exclusions, this study will enroll up to 1528 subjects that meet the eligibility criteria. Participants who meet the eligibility criteria will be recruited after obtaining written informed consent from primary health care providers. Subjects will undergo fundus photography per, Food and Drug Administration (FDA) cleared, ophthalmic cameras. Images will be taken according to a specific EyeCheckup imaging protocol provided to the ophthalmic camera operator and then analyzed by the EyeCheckup v2.0 device. Methods and tools to be used in the research: I. Fundus photo capturing with non-mydriatic cameras: Optic disc-centered and fovea-centered fundus images will be taken with Canon CR-2 AF, Topcon TRC-NW400 and Optomed Aurora Non-mydriatic fundus cameras. For volunteers whose non-mydriatic images cannot be obtained, pupil dilation will be achieved by instilling tropicamide drops, and then images will be taken. Canon CR-2 AF, Topcon TRC-NW400 and Optomed Aurora Non-mydriatic fundus cameras, from which retina images will be taken, are CE marked and FDA approved. Tests to be done: I. Fundus images obtained with three different cameras from each volunteer included in the study will be analyzed separately for both the right eye and the left eye by the EyeCheckup artificial intelligence algorithm on a camera-based basis. ii. Evaluation of Canon CR-2 AF images by retina and glaucoma specialists for clinical validation of the system and comparison of the results, ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06213896
Study type Observational
Source URAL Telekomunikasyon San. Trade Inc.
Contact
Status Completed
Phase
Start date March 1, 2023
Completion date April 18, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT06000865 - Glaucoma Rehabilitation With Action viDeo Games and Exercise - GRADE N/A
Recruiting NCT06278597 - Automatic Evaluation of the Anterior Chamber Angle Width by a New Non-contact Optical Device N/A
Active, not recruiting NCT04271709 - Manhattan Vision Screening and Follow-Up Study (NYC-SIGHT) N/A
Recruiting NCT03274024 - The Asia Primary Tube Versus Trab (TVT) Study N/A
Completed NCT04552964 - Assessment of the Impact of an add-on and Its Smartphone Application on the Daily Management of Glaucoma N/A
Recruiting NCT01957267 - Functional and Structural Imaging for Glaucoma
Active, not recruiting NCT04624698 - iStent Inject New Enrollment Post-Approval Study N/A
Completed NCT04020705 - The Efficacy of Citicoline in Eyedrops (OMK1) in Reducing the Progression of Glaucoma N/A
Completed NCT03150160 - Additive Effect of Twice-daily Brinzolamide 1%/Brimonidine 0.2%Combination as an Adjunctive Therapy to Travoprost in Patients With Normal Tension Glaucoma Phase 4
Not yet recruiting NCT05581498 - Glaucoma Exercise as Medicine Study (GEMS). N/A
Recruiting NCT02921568 - Side-by-Side Comparison of P200TE and Spectral OCT/SLO on Diseased Eyes N/A
Active, not recruiting NCT02901730 - Clinical Study of LPI With Different Laser Wavelengths N/A
Completed NCT02955849 - A Trial of China Laser and Surgery Study Glaucoma in Rural China Early Phase 1
Recruiting NCT02554214 - Pilot Clinical Trial on a New Adjustable Glaucoma Drainage Device N/A
Recruiting NCT02471105 - Investigation of IOP and Tolerability of Bimatoprost 0.01% and Tafluprost Unit Dose Preservative Free 15 Microgram/ml Phase 4
Active, not recruiting NCT02390284 - Stop Retinal Ganglion Cell Dysfunction Study Phase 3
Completed NCT02653963 - Triamcinolone for Ahmed Glaucoma Valve N/A
Completed NCT02628223 - 180 Degree vs. 360 Degree Selective Laser Trabeculoplasty as Initial Therapy for Glaucoma N/A
Completed NCT02390245 - Philadelphia Telemedicine Glaucoma Detection and Follow-Up Study N/A
Completed NCT02520674 - Glaucoma Screening With Smartphone Ophthalmology N/A