Glaucoma Clinical Trial
Official title:
Investigation of Retinal Pathology in Eye Diseases Using High Resolution Optical Coherence Tomography (High-Res-OCT)
Comparison of high-resolution optical coherence tomography (High-Res-OCT) to conventional imaging modalities for the diagnosis of eye diseases
Status | Recruiting |
Enrollment | 550 |
Est. completion date | November 30, 2023 |
Est. primary completion date | November 30, 2023 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Patients from the Department of Ophthalmology, University Hospital Bern requiring conventional imaging for eye disease and willing to sign informed consent Patients of 18 years or older Exclusion Criteria: - Patients not willing or able to sign informed consent - Patients younger than 18 years - Patients with epilepsy. - Vulnerable subjects (except the objectives of the investigation concern vulnerable subjects specifically), - Inability to follow the procedures of the investigation, e.g. due to language problems, psychological disorders, dementia, etc. of the subject - Participation in another investigation with an investigational drug or another MD within the 30 days preceding and during the present investigation - Enrolment of the PI, his/her family members, employees and other dependent persons |
Country | Name | City | State |
---|---|---|---|
Switzerland | Department of Ophthalmology, Bern University Hospital, Bern, 3010 Bern, Switzerland | Bern 3010 | Bern |
Lead Sponsor | Collaborator |
---|---|
University Hospital Inselspital, Berne |
Switzerland,
An L, Li P, Shen TT, Wang R. High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second. Biomed Opt Express. 2011 Oct 1;2(10):2770-83. doi: 10.1364/BOE.2.002770. Epub 2011 Sep 12. — View Citation
Aumann S, Donner S, Fischer J, Müller F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In: Bille JF, ed. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics. Cham: Springer International Publishing; 2019: 59-85.
Chen Y, Vuong LN, Liu J, Ho J, Srinivasan VJ, Gorczynska I, Witkin AJ, Duker JS, Schuman J, Fujimoto JG. Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration. Opt Express. 2009 Mar 2;17(5):4046-60. — View Citation
de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003 Nov 1;28(21):2067-9. — View Citation
Ferris FL, Davis MD, Clemons TE, Lee LY, Chew EY, Lindblad AS, Milton RC, Bressler SB, Klein R; Age-Related Eye Disease Study (AREDS) Research Group. A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol. 2005 Nov;123(11):1570-4. doi: 10.1001/archopht.123.11.1570. — View Citation
Guyatt G, Jaeschke R, Heddle N, Cook D, Shannon H, Walter S. Basic statistics for clinicians: 1. Hypothesis testing. CMAJ. 1995 Jan 1;152(1):27-32. Review. — View Citation
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991 Nov 22;254(5035):1178-81. doi: 10.1126/science.1957169. — View Citation
Ishida S, Nishizawa N. Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region. Biomed Opt Express. 2012 Feb 1;3(2):282-94. doi: 10.1364/BOE.3.000282. Epub 2012 Jan 11. — View Citation
Liu YZ, South FA, Xu Y, Carney PS, Boppart SA. Computational optical coherence tomography [Invited]. Biomed Opt Express. 2017 Feb 16;8(3):1549-1574. doi: 10.1364/BOE.8.001549. eCollection 2017 Mar 1. — View Citation
Ly A, Phu J, Katalinic P, Kalloniatis M. An evidence-based approach to the routine use of optical coherence tomography. Clin Exp Optom. 2019 May;102(3):242-259. doi: 10.1111/cxo.12847. Epub 2018 Dec 17. Review. — View Citation
Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018 Sep 29;392(10153):1147-1159. doi: 10.1016/S0140-6736(18)31550-2. Review. — View Citation
Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015 Mar 4;10(3):e0118432. doi: 10.1371/journal.pone.0118432. eCollection 2015. — View Citation
Tsang SH, Sharma T. Fluorescein Angiography. Adv Exp Med Biol. 2018;1085:7-10. doi: 10.1007/978-3-319-95046-4_2. — View Citation
Viechtbauer W, Smits L, Kotz D, Bude L, Spigt M, Serroyen J, Crutzen R. A simple formula for the calculation of sample size in pilot studies. J Clin Epidemiol. 2015 Nov;68(11):1375-9. doi: 10.1016/j.jclinepi.2015.04.014. Epub 2015 Jun 6. — View Citation
Wojtkowski M, Srinivasan V, Ko T, Fujimoto J, Kowalczyk A, Duker J. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express. 2004 May 31;12(11):2404-22. — View Citation
Wolf S, Wolf-Schnurrbusch U. Spectral-domain optical coherence tomography use in macular diseases: a review. Ophthalmologica. 2010;224(6):333-40. doi: 10.1159/000313814. Epub 2010 May 4. Review. — View Citation
* Note: There are 16 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Correlation of pathological changes with fundus color photographs | Evaluation whether pathological changes seen in color fundus photography correlate with changes seen in High-Res-OCT. Here, a binary readout, i.e pathology present (yes/no) will be used. | 2 years | |
Primary | Evaluation of the sensitivity and specificity of High-Res-OCT for retinal fluid | The primary objective of this observational study is to evaluate the sensitivity and specificity to diagnose retinal morphological abnormalities with High-Resolution OCT compared to conventional imaging method (SD-OCT). The main parameter that will be assessed is the presence/absence of retinal fluid. The incidence (binary) of retinal fluid will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT) | 2 years | |
Secondary | Evaluation of the sensitivity and specificity of High-Res-OCT for atrophy area | The incidence (binary) of atrophy area, defined as hypertransmission due to loss of outer retinal layers within the choroidea, will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT) | 2 years | |
Secondary | Evaluation of the sensitivity and specificity of High-Res-OCT for epiretinal membrane | The incidence (binary) of epiretinal membrane (defined as thickening of the retinal nerve fiber layer) will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT) | 2 years | |
Secondary | Evaluation of the sensitivity and specificity of High-Res-OCT for drusen | The incidence (binary) of drusen will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Drusen are defined as hyperfluorescent deposits between the RPE and Bruch's membrane (BM). May be "hard" (small hyperreflective deposits in the retina) and "soft" (larger with indistinct edges). | 2 years | |
Secondary | Evaluation of the sensitivity and specificity of High-Res-OCT for ischemia | The incidence (binary) of ischemia will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Ischemia is defined as hyperreflective band located within/above the outer plexiform layer. | 2 years | |
Secondary | Evaluation of the sensitivity and specificity of High-Res-OCT for neovascularisation | The incidence (binary) of neovascularisation will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Neovascularisation is defined as abnormal growth of vessels from the choroid to the retina through the BM. | 2 years | |
Secondary | Evaluation of the sensitivity and specificity of High-Res-OCT for optic disc swelling | The incidence (binary) of optic disc swelling will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Optic disc swelling is defined as an elevation of the whole nerve head, measured as follows: max. horizontal extent in micrometer of the RNFL (3 mm diameter peripapillary). | 2 years | |
Secondary | Evaluation of the sensitivity and specificity of High-Res-OCT for hyperreflective foci | The incidence (binary) of hyperreflective foci will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Hyperreflective foci are defined as intraretinal hyperreflective dots. | 2 years | |
Secondary | Evaluation of the sensitivity and specificity of High-Res-OCT for scars | The incidence (binary) of scars will be assessed in High-Resolution OCT and compared to conventional imaging method, such as standard-OCT (SD-OCT). Scars are defined as hyperreflective fibrous tissue, which obscures RPE and choroid. | 2 years | |
Secondary | Evaluation of the inter-reader reproducibility | Evaluation of the inter-reader reproducibility of the diagnosis of retinal diseases with High-Res-OCT. Inter-reader reproducibility will be estimated using the Bland-Altman method and the coefficient of repeatability (CoR). | 2 years | |
Secondary | Subgroup analysis | Subgroup analysis will be performed with patients suffering from diabetic retinopathy, artery and vein occlusion, retinal detachment, glaucoma, optic nerve neuropathy, hereditary retinal diseases, age related macular degeneration, retinal changes from arterial hypertension and uveitis. For this purpose, the presence/absence of each above-mentioned morphological abnormality will be assessed/measured in each subgroup and compared with the standard OCT. | 2 years | |
Secondary | Evaluation of the segmentation quality of the retinal layers using High-Res-OCT | For this purpose the discrimination capacity between the different retinal layers will be assessed, i.e. internal limiting membrane, retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, external limiting membrane, photoreceptor layers, retinal pigment epithelium, Bruch's membrane, choriocapillaris, choroidal stroma. For this purpose, a binary outcome will also result, which means that the ability to discriminate between the above-mentioned adjacent layers will be indicated by yes/no. | 2 years |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06000865 -
Glaucoma Rehabilitation With Action viDeo Games and Exercise - GRADE
|
N/A | |
Recruiting |
NCT06278597 -
Automatic Evaluation of the Anterior Chamber Angle Width by a New Non-contact Optical Device
|
N/A | |
Active, not recruiting |
NCT04271709 -
Manhattan Vision Screening and Follow-Up Study (NYC-SIGHT)
|
N/A | |
Recruiting |
NCT03274024 -
The Asia Primary Tube Versus Trab (TVT) Study
|
N/A | |
Completed |
NCT04552964 -
Assessment of the Impact of an add-on and Its Smartphone Application on the Daily Management of Glaucoma
|
N/A | |
Recruiting |
NCT01957267 -
Functional and Structural Imaging for Glaucoma
|
||
Active, not recruiting |
NCT04624698 -
iStent Inject New Enrollment Post-Approval Study
|
N/A | |
Completed |
NCT04020705 -
The Efficacy of Citicoline in Eyedrops (OMK1) in Reducing the Progression of Glaucoma
|
N/A | |
Completed |
NCT03150160 -
Additive Effect of Twice-daily Brinzolamide 1%/Brimonidine 0.2%Combination as an Adjunctive Therapy to Travoprost in Patients With Normal Tension Glaucoma
|
Phase 4 | |
Not yet recruiting |
NCT05581498 -
Glaucoma Exercise as Medicine Study (GEMS).
|
N/A | |
Recruiting |
NCT02921568 -
Side-by-Side Comparison of P200TE and Spectral OCT/SLO on Diseased Eyes
|
N/A | |
Active, not recruiting |
NCT02901730 -
Clinical Study of LPI With Different Laser Wavelengths
|
N/A | |
Completed |
NCT02955849 -
A Trial of China Laser and Surgery Study Glaucoma in Rural China
|
Early Phase 1 | |
Recruiting |
NCT02554214 -
Pilot Clinical Trial on a New Adjustable Glaucoma Drainage Device
|
N/A | |
Recruiting |
NCT02471105 -
Investigation of IOP and Tolerability of Bimatoprost 0.01% and Tafluprost Unit Dose Preservative Free 15 Microgram/ml
|
Phase 4 | |
Active, not recruiting |
NCT02390284 -
Stop Retinal Ganglion Cell Dysfunction Study
|
Phase 3 | |
Completed |
NCT02390245 -
Philadelphia Telemedicine Glaucoma Detection and Follow-Up Study
|
N/A | |
Completed |
NCT02653963 -
Triamcinolone for Ahmed Glaucoma Valve
|
N/A | |
Completed |
NCT02628223 -
180 Degree vs. 360 Degree Selective Laser Trabeculoplasty as Initial Therapy for Glaucoma
|
N/A | |
Completed |
NCT02520674 -
Glaucoma Screening With Smartphone Ophthalmology
|
N/A |