View clinical trials related to Genetic Syndrome.
Filter by:The GAP study is a randomized controlled trial that aims to determine the feasibility and efficacy of the "Incredible Years Autism Spectrum and Language Delays" (IY-ASLD®) intervention for families of children with developmental problems from a genetic basis. It is a multicentric trial where families will randomly be assigned to the intervention group or to a control group (they will follow their usual treatment). The intervention will be carried out in an online format, and it will involve 22 weekly group sessions. The results of The GAP study will help clinicians and policy makers in guiding towards evidence-based treatment options for these particularly vulnerable group of infants.
The main objective of this study is to apply a well-established model of developmental surveillance (which evolved to characterize the outcomes of very low birth weight infants) to infants with genetic disorders. A novel clinical model for infants with rare genetic disorders has been created as a joint initiative between the Division of Newborn Medicine's NICU Growth and Developmental Support Programs (NICU GraDS) program and the Division of Genetics at Boston Children's Hospital (BCH). This study plans to enroll patients with genetic syndromes seen in this clinic into a prospective, longitudinal study in order to characterize their developmental profiles and needs.
This is a pilot study involving a prospective group of 15 evaluable patients who will undergo rapid whole genome sequencing in addition to standard of care testing. Subjects will be drawn from children admitted to the NICU at OSF Health Care Children's Hospital of Illinois who meet inclusion criteria. The aims of this study are to evaluate the turn-around time and cost of performing rapid whole genome sequencing (rWGS) compared to standard of care in the diagnosis of genetic disorders among critically ill infants in a regional children's hospital and to describe management outcomes of utilizing rWGS in acutely ill patients less than four months of age.
Pulmonary Veino Occlusive Disease (PVOD) is a rare form of pulmonary arterial hypertension, characterised by a poor prognosis. Recent studies demonstrated that heritable form of pulmonary veino occlusive diseaseis due to bi-allelic mutations in EIF2AK4 gene. heritable pulmonary veino occlusive disease is an autosomal recessive disease. In the french referal center of severe PH, ulmonary veino occlusive disease patients carriers of bi-allelic mutations in EIF2AK4 gene were identified. Genetic counselling in these families allowed to identified herozygous carriers of a single mutation in EIF2AK4 gene. However, to date, nothing is known about the risk of these persons of developping pulmonary diseases. It appears essential to determine the clinical, functional, echocardiographic and radiologics characteristics of these persons, and their risk of developping Pulmonary veino occlusive disease
NGLY1 deficiency is a rare genetic disorder that is characterized by: global developmental delay and/or intellectual disability, hypo- or alacrima, transient elevation of transaminases, and a hyperkinetic movement disorder. Significant phenotypic variability has been observed in the small number of affected individuals described in the medical literature. The purpose of this study is to describe the natural history of NGLY1 deficiency in a prospective, detailed, and highly uniform manner. Study participants will be closely monitored over the course of five years in order to: - understand the clinical spectrum and progression of NGLY1 deficiency using standardized clinical and neurodevelopmental assessments - identify clinical and biomarker endpoints for use in therapeutic trials, and - identify genotype-phenotype correlations Close clinical follow-up will allow for generation of a rich dataset and detailed understanding of the natural history of NGLY1 deficiency.
Studies have shown that the risk of developing heart arrhythmias, is increased in patients receiving medication for Attention-deficit hyperactivity disorder (ADHD) and depression. The QT-interval on a electrocardiogram (ECG) is often used to assess the patients risk of developing heart arrhythmias. The QT-interval defines the hearts electrical resting period and a long interval is linked to an increased risk of developing heart arrhythmias. In this project the investigators wish to examine possible side-effects in patients receiving medication for ADHD and depression and their dynamic QT-interval changes, by analysing the ECG changes that occur during "Brisk Standing".
The goal of this collaborative research is to study human genomes in children with suspected congenital disease, multiple-congenital anomalies and/or multi-organ disease of unknown etiology by understanding the potential value of Whole Genome Sequencing (WGS) in establishing genetic diagnosis. The study will examine diagnosis rates, changes in clinical care as a result of a genetic diagnosis, health economics including potential cost-effectiveness of WGS and patient and provider experience with genomic medicine.
Noninvasive prenatal genetic testing (NIPT) is an important new screening test option provided to pregnant women in the first trimester of pregnancy. The advantage of this screen is that is provides information about the risk of trisomy 13, trisomy 18, and trisomy 21 with greater accuracy than conventional screens. At the same time, NIPT can produce information about the risk of a cohort of other fetal genetic variants, including sex chromosome aneuploidies and microdeletion syndromes. While not yet clinically available for whole exome sequencing, the potential for this next clinical application already exists. The challenge is that, while this is an important new test, there are little data about how to best structure patient-centered decisions about its use, including decisions if to use this screen and how the information may directly inform subsequent prenatal care decisions. The purpose of this study is to gain formative data about current practice patterns with respect to how NIPT is discussed in the clinical visit and to use these data to help inform best practices for its continued use in the clinical setting.
Rapid Whole Genome Sequencing (rWGS) has proven to provide much faster diagnoses than traditional clinical testing, including clinical Whole Exome Sequencing (WES) and standard Whole Genome Sequencing (WGS). This collaborative study seeks to provide rWGS as a research test to additional pediatric hospitals nationwide to assist in the rapid diagnosis of acutely ill children suspected of a genetic condition. The study will examine diagnosis rates, changes in clinical care as a result of a genetic diagnosis, and health economics including potential cost-effectiveness of rWGS. This study will also serve as a biorepository for future research on samples and data generated from genomic sequencing.
Taybi-Linder syndrome (TALS, OMIM 210710) is a rare autosomal recessive disorder belonging to the group of microcephalic osteodysplastic primordial dwarfisms (MOPD). This syndrome is characterized by short stature, skeletal anomalies, severe microcephaly with brain malformations and facial dysmorphism, and is caused by mutations in RNU4ATAC. Although RNU4ATAC-associated TALS is a recognizable phenotype, an atypical presentation is sometimes observed, thus expanding the clinical spectrum (TALS-like phenotype). This study aims to identify new variants involved in Taybi-Linder syndrome and associated phenotypes (i.e.TALS-like). This non interventional study will be performed on patients with no proven mutation of RNU4ATAC and their blood relatives (19 samples total) by high throughput sequencing and genetic analysis of already collected deoxyribonucleic acid samples. Altogether, such a study will allow a better understanding of the molecular mechanisms responsible for the Taybi-Linder syndrome and Taybi-Linder syndrome-like phenotypes as well as the pathophysiology of these devastating forms of microcephalic dwarfism.