View clinical trials related to Genetic Diseases, Inborn.
Filter by:Subjects completing participation in study PQ-110-001 (EudraCT 2017-000813-22 / NCT03140969) will be given the opportunity to enroll into the extension study for continued dosing if available data support current and/or future benefits for the subject. Study PQ-110-002 will provide long-term safety, tolerability, pharmacokinetic (PK), and efficacy data of QR-110.
Brief Summary: Nonimmune hydrops fetalis (NIHF) is a potentially fatal condition characterized by abnormal fluid accumulation in two or more fetal compartments. Numerous etiologies may lead to NIHF, and the underlying cause often remains unclear (1). The current standard of genetic diagnostic testing includes a fetal karyotype and chromosomal microarray (CMA), with an option to pursue single gene testing on amniocytes collected by amniocentesis (2). A large subgroup of the NIHF causes includes single gene disorders that are not diagnosed with the standard genetic workup for hydrops. Currently, nearly 1 in 5 cases of NIHF is defined as idiopathic, meaning there is no identified etiology (2). The investigators believe this is because the causes of NIHF are not completely investigated, specifically single gene disorders. Our research study aims to increase the diagnostic yield by performing whole exome sequencing (WES) and whole genome sequencing (WGS) on prenatal and neonatal NIHF cases when standard genetic testing is negative, identifying known and new genes, thus providing vital information to families regarding the specific diagnosis and risk to future pregnancies. The investigators plan to perform WES as the initial diagnostic test. If WES is negative, then the investigators will proceed to perform WGS.
Phenotypic characterisation of MVP by echocardiography in families. Identification of genes involved in MVP.
The aim of this prospective, observational study is to establish a dataset on the frequency of bleeding events, as well as other characteristics of bleeding events and FVIII infusions, in patients with clinically severe hemophilia A receiving prophylactic FVIII replacement therapy as standard of care. The data collected from this study may assist in providing baseline information for comparison to the Spark's investigational hemophilia A gene therapy in future Phase 3 studies.
The goal of the study is to develop a method of genetic diagnosis in two stages, by mendelioma then by genome and transcriptome on fibroblast culture, in genodermatoses and rare diseases with cutaneous expression in the child.
The purpose of this study is to evaluate the safety, tolerability and efficacy of a single escalating doses of EDIT-101 administered via subretinal injection in participants with LCA10 caused by a homozygous or compound heterozygous mutation involving c.2991+1655A>G in intron 26 of the CEP290 gene ("LCA10-IVS26").
This study is a controlled trial of metformin in individuals with fragile X syndrome between the ages of 6 and 35 years. Participants will be randomized in a double-blind design to either drug or placebo and will attend three visits to the study site in a 4-month period for a series of tests. The primary objectives are to assess safety, tolerability, and efficacy of metformin in the treatment of language deficits, behavior problems, and obesity/excessive appetite in individuals with fragile X syndrome.
The primary hypothesis is that a tailored programme of genetic and imaging screening of first- and second-degree relatives of patients affected by non-syndromic forms of thoracic aortic diseases will identify individuals at risk of death from these conditions. These individuals would constitute specific population of patients, requiring dedicated imaging surveillance and/or earlier prophylactic aortic surgery.
Starting from isolating primary cells from affected patients, an in vitro disease model system for KS will be developed. Using alternative strategies to obtain patient-derived mesenchymal stem cells, an integrative approach will be adopted for defining both the transcriptional and epigenetic regulatory networks perturbed upon the loss of function of KMT2D. Combining the self-renewal potential of mesenchymal stem cells (MSCs) with CRISPR/Cas9 technology, an epigenome editing approach as therapeutic strategy to rescue the activity of MLL4 will be developed. A step forward is expected towards the understanding of those the molecular mechanisms governing the aetiology of Kabuki Syndrome (KS) and that the proposed in vitro disease model will provide to the scientific community an experimental system to study the KS. Importantly, the aim is to define the molecular bases of KS and to develop a therapeutic strategy that could ameliorate some of the abnormalities associated with KS.
The purpose of this study is to evaluate the efficacy and safety of DCR-PHXC in Children and Adults with Primary Hyperoxaluria Type 1 (PH1) and Primary Hyperoxaluria Type 2 (PH2)