Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT02197351
Other study ID # HS-14-00418
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date July 2014
Est. completion date December 2023

Study information

Verified date March 2023
Source University of Southern California
Contact James Buxabum, MD
Phone 323 409 5371
Email jbuxbaum@usc.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

It is thought that the development of cancer of the stomach follows a series of stages in which the lining becomes increasingly abnormal. Early detection of precursors of gastric cancer likely enable less invasive treatment. The assessment of gastric mucosa using the endoscope is used to detect cancers and these precursor lesions. Narrow band imaging uses filtered light already built into modern endoscopoes to identify the early changes in the gastric lining. The investigators' hypothesis is that narrow band imaging improves detection of precursor lesions and is a method amenable to international standardization. The investigators will conduct a prospective trial in which standard random biopsy, white light guided biopsy, and narrow band imaging guided biopsy will be performed for each patient. The yield of the different methods for gastric cancer precursors will thus be compared.


Description:

1 BACKGROUND Precursor Lesions Gastric cancer is the fourth most common cancer and second leading cause of malignant death in the world. It often presents only with vague symptoms of dyspepsia and consequently is frequently diagnosed at advanced stages. Gastric cancer develop in a series of steps beginning with H. pylori infection. 2-4 It induces an inflammatory reaction with the surrounding gut epithelium which is theorized to drive a subsequent progression in some patients to mucosal atrophy, intestinal metaplasia, dysplasia, and finally gastric adenonocarcinoma. Systematic biopsy protocols In the evaluation for precancerous gastric lesions and Helicobacter pylori, experts recommend that biopsies be obtained from the antrum (3cm from pylorus), body (8cm from the pylorus), and insisura/angle. Both the greater and lesser curvature should be sampled. Additionally, recently developed staging systems including OLGIM (operative clinic on intestinal metaplasia) scores require histologic assessment (via the updated Sydney score) from two sites (antrum and corpus). Narrow Band Imaging in endoscopy Patients with H. pylori gastritis, gastric atrophy, intestinal metaplasia most commonly have no visible lesions on white-light endoscopy, although endoscopic findings may include antral nodularity, absent rugae, prominent gastric vessels white mucosal deposits. However, the sensitivity and specificity of these gross findings for underlying histological findings is poor. Therefore a number of image-enhancement techniques including chromoendoscopy using mucosal dyes or endoscopy-based virtual chromo-endoscopy (e.g., narrow band imaging) have been proposed. Narrow band imaging is the most widely investigated. Narrow band imaging is an electronic, noninvasive technique in which the illuminating light from the endoscope is filtered to enable passage primarily of two narrow bands of light, 415nm and 540nm. These wavelengths correspond to the hemoglobin absorption wavelength in the capillaries and submucosal vessels respectively. This enhances evaluation of the mucosal surface patterns and vascular irregularities. NBI has been shown to be useful in the detection of dysplasia in Barrett's esophagus and characterization of small colonic adenomas. Recently, a simple NBI classification using high-definition white light endoscopy was proposed for gastric mucosal examination.18 The NBI interpretation using this classification was compared with histological examination of mucosal biopsies, with both NBI and histology determined in blinded fashion. This classification which defines the mucosal pattern of the stomach had an accuracy exceeding 80% and excellent interobserver agreement (kappa=0.75) for normal mucosa, intestinal metaplasia, and dysplasia. However, the study was done at a referral center where 34% of patients had dysplasia and NBI was not compared with a white light assessment or standardized gastric biopsy protocol. Additionally, the results were not provided on a per patient basis, which is the most relevant endpoint in clinical practice. 2.0 OBJECTIVES AND PURPOSE Prompt detection of gastric cancer precursors enables early detection and less invasive treatment options such as endoscopic resection. Narrow band imaging is a completely noninvasive technique which uses filtered light to enhance assessment of mucosa. Our aim is to gauge whether biopsies targeted by narrow band imaging improves the detection of gastric intestinal metaplasia and gastric dysplasia relative to standard white light techniques on a per patient basis. A secondary aim will be to assess whether the technique is amenable to standardization so that it might be used more broadly to identify patients with early gastric neoplasia. While NBI is built into the vast majority of endoscopes in use few physicians are aware of its potential use. 3.0 STUDY DESIGN The study will be a prospective tandem endoscopy trial. All EGDs will have already been planned as part of standard clinical care. High definition white light endoscopy will initially be performed. The specific location of all mucosal findings in the stomach such as ulceration or nodularity which require biopsy will be noted by the endoscopist and research coordinator but will not be biopsied until after NBI. This is done so that blood will not distort or bias NBI assessment. Any abnormal findings in other parts of the GI tract examined using the scope (esophagus and duodenum) will be noted and biopsied. At the completion of the white light exam, while the scope is in the stomach, the white light endoscopist will press a button on the scope which changes the view to the narrow band imaging. At this point the NBI endoscopist who is initially blinded to the white light findings will enter the procedure room and examine the stomach using NBI. The type and location of NBI abnormalities will be noted and biopsies obtained. At the end of the NBI exam the NBI endoscopist will switch the scope view back to white light mode. The white light endoscopist will return to the room and biopsy any sites identified and recorded during the initial white-light endoscopy. A research coordinator present for the entire procedure will verify and record that all sites identified during the initial white light exam are biopsied. Subsequently, random biopsies will be performed by taking 2 biopsies from the lesser curvature (body and antrum), 2 biopsies from the greater curvature (body and antrum), and one from the angle. The biopsies obtained by white light exam, narrow band imaging exam, and random sampling will be separately coded and submitted to pathology. Histologic analysis will be performed by expert GI pathologists blinded to the acquisition approach. Short 10 second video clips of each site targeted for biopsy by white light narrow band imaging will be recorded. They will be matched with the final biopsy results and stored WITHOUT personal health identifiers. These short videos may be used for training and shared with collaborators to assess inter-observer variability and standardize the interpretation of NBI of the stomach. The primary outcome measure will be yield of NBI, high definition white light endoscopy, and random biopsy for the detection of atrophic gastritis, IM and dysplasia on a per patient basis. A secondary endpoint will be the number of regions found by each method to exhibit atrophic gastritis, IM, and dysplasia (per lesion (region) yield). The yields of H. Pylori by method and the total number of biopsies guided per method will be additional outcomes. Patients will be enrolled at the Los Angeles County Hospital of the University of Southern California as well as the Gastroenterology Unit at the University of Porto in Porto Portugal. The protocol originates from and statistical analysis will be done at the University of Southern California. No personal health identifiers will be exchanged at any point between the two institutions. Prior to the formal initiation of the study there will be a lead in period of 10-20 patients with gastric symptoms. The initial patients will be examined using the white light, NBI, and gastric biopsy protocol. After this the images will be discussed by the investigators at the two centers to make certain that NBI interpretation of gastric premalignant changes is standardized. The LAC+USC investigators will also review the Portugese video training library on gastric NBI. Any changes in performance of the lead in versus the study will be noted to address the secondary aim of developing a standardized approach to NBI which may help this technique be used widely to identify patients with early gastric neoplasia. 4 STATISTICAL CONSIDERATIONS The Fisher's exact chi squared test will be used for dichotomous outcomes such as the accurate detection of the highest level histology and number of biopsies. Adverse reactions will be reported in a descriptive manner. Based on previous research which showed 74% correction detection of gastric cancer precursors with white light endoscopy versus 89% with NBI and given our anticipated gastric cancer prevalence of 20% we performed preliminary sample size estimates for a range of OR using G*Power (alpha=0.05, beta =0.20). We anticipate an N of 200 will be sufficient to show a significant difference between methods.


Recruitment information / eligibility

Status Recruiting
Enrollment 220
Est. completion date December 2023
Est. primary completion date December 2023
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - presenting for upper endoscopy for gastric indications - gastric indications include upper abdominal pain dyspepsia abnormal gastric imaging iron deficiency anemia gastric ulcer management of GI blood loss without active bleeding reflux weight loss. Exclusion Criteria: - Subjects who are incarcerated, younger than 18, or unable to give informed consent will be excluded. - Patients who have evidence of active gastrointestinal bleeding will be excluded - Patients taking anti-thrombotic agents including clopidogrel, ticlopidine, coumadin, heparin, enoxaparin, and direct II or Xa inhibitors - Patients with INR >1.5, platelet count <75,000

Study Design


Intervention

Procedure:
White light biopsy
Endoscopy with biopsies guided by high definition white light
Protocolled
Upper Endoscopy with Protocolled Biopsy (i.e. biopsy by predetermined guideline not influenced by white light or narrow band imaging findings)
Narrow Band Imaging Guided Biopsy
Upper Endoscopy with biopsy guided by narrow and imaging

Locations

Country Name City State
Portugal Department of Gastroenterology Portuguese Oncology Institute of Porto Porto
United States Los Angeles County Hospital Los Angeles California

Sponsors (2)

Lead Sponsor Collaborator
University of Southern California Universidade do Porto

Countries where clinical trial is conducted

United States,  Portugal, 

References & Publications (6)

Capelle LG, de Vries AC, Haringsma J, Ter Borg F, de Vries RA, Bruno MJ, van Dekken H, Meijer J, van Grieken NC, Kuipers EJ. The staging of gastritis with the OLGA system by using intestinal metaplasia as an accurate alternative for atrophic gastritis. Gastrointest Endosc. 2010 Jun;71(7):1150-8. doi: 10.1016/j.gie.2009.12.029. Epub 2010 Apr 9. — View Citation

de Vries AC, van Grieken NC, Looman CW, Casparie MK, de Vries E, Meijer GA, Kuipers EJ. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology. 2008 Apr;134(4):945-52. doi: 10.1053/j.gastro.2008.01.071. Epub 2008 Jan 30. — View Citation

den Hoed CM, Holster IL, Capelle LG, de Vries AC, den Hartog B, Ter Borg F, Biermann K, Kuipers EJ. Follow-up of premalignant lesions in patients at risk for progression to gastric cancer. Endoscopy. 2013;45(4):249-56. doi: 10.1055/s-0032-1326379. Epub 2013 Mar 26. — View Citation

Dias-Silva D, Pimentel-Nunes P, Magalhaes J, Magalhaes R, Veloso N, Ferreira C, Figueiredo P, Moutinho P, Dinis-Ribeiro M. The learning curve for narrow-band imaging in the diagnosis of precancerous gastric lesions by using Web-based video. Gastrointest Endosc. 2014 Jun;79(6):910-20; quiz 983-e1, 983.e4. doi: 10.1016/j.gie.2013.10.020. Epub 2013 Nov 26. — View Citation

Dinis-Ribeiro M, Areia M, de Vries AC, Marcos-Pinto R, Monteiro-Soares M, O'Connor A, Pereira C, Pimentel-Nunes P, Correia R, Ensari A, Dumonceau JM, Machado JC, Macedo G, Malfertheiner P, Matysiak-Budnik T, Megraud F, Miki K, O'Morain C, Peek RM, Ponchon T, Ristimaki A, Rembacken B, Carneiro F, Kuipers EJ; European Society of Gastrointestinal Endoscopy; European Helicobacter Study Group; European Society of Pathology; Sociedade Portuguesa de Endoscopia Digestiva. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy. 2012 Jan;44(1):74-94. doi: 10.1055/s-0031-1291491. Epub 2011 Dec 23. — View Citation

Pimentel-Nunes P, Dinis-Ribeiro M, Soares JB, Marcos-Pinto R, Santos C, Rolanda C, Bastos RP, Areia M, Afonso L, Bergman J, Sharma P, Gotoda T, Henrique R, Moreira-Dias L. A multicenter validation of an endoscopic classification with narrow band imaging for gastric precancerous and cancerous lesions. Endoscopy. 2012 Mar;44(3):236-46. doi: 10.1055/s-0031-1291537. Epub 2012 Jan 31. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Detection of Intestinal Metaplasia or Dysplasia Confirmation of intestinal metaplasia in stomach per patient by each method-NBI versus white light-versus random One Year
Secondary Number of Regions with Intestinal Metaplasia Number of Region with Intestinal Metaplasia detected in the stomach (total not per patient) detected by each method-NBI versus white light-versus random 1 year
Secondary Number of regions with dysplasia Number of regions with dysplasia detected in the stomach (total not per patient) detected by each method-NBI versus white light-versus random one year
Secondary Biopsies driven by method Number of biopsies driven by each method. Number driven by each method-NBI versus white light-versus random will be compared. One year
Secondary Helicobacter pyrlori detection Detection ofHelicobacter pylori by method One year
See also
  Status Clinical Trial Phase
Recruiting NCT05551416 - The EpiGASTRIC/EDGAR Project: New Strategies for the Early Detection and Prevention of Gastric Cancer
Completed NCT05518929 - Hypoxia During Gastroenterological Endoscope Procedures Sedated With Ciprofol In Overweight Or Obesity Patients Phase 4
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT03219593 - Apatinib as the First-Line Therapy in Elderly Locally Advanced or Metastatic Gastric Cancer Phase 2
Recruiting NCT05489211 - Study of Dato-Dxd as Monotherapy and in Combination With Anti-cancer Agents in Patients With Advanced Solid Tumours (TROPION-PanTumor03) Phase 2
Recruiting NCT05536102 - The Effectiveness and Safety of XELOX and Tislelizumab + PLD for Resectable Gastric Cancer (LidingStudy) Phase 2
Active, not recruiting NCT03170960 - Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors Phase 1/Phase 2
Recruiting NCT06010862 - Clinical Study of CEA-targeted CAR-T Therapy for CEA-positive Advanced/Metastatic Malignant Solid Tumors Phase 1
Recruiting NCT05415098 - Study of Safety, Pharmacokinetic and Efficacy of APG-5918 in Advanced Solid Tumors or Lymphomas Phase 1
Active, not recruiting NCT04082364 - Combination Margetuximab, Retifanlimab, Tebotelimab, and Chemotherapy Phase 2/3 Trial in HER2+ Gastric/GEJ Cancer Phase 2/Phase 3
Withdrawn NCT03766607 - Trastuzumab Beyond Progression in HER2 Positive Metastatic Gastric Cancer Phase 2
Recruiting NCT04118114 - Phase II Study of PRL3-ZUMAB in Advanced Solid Tumors Phase 2
Completed NCT01924533 - Efficacy and Safety Study of Olaparib in Combination With Paclitaxel to Treat Advanced Gastric Cancer. Phase 3
Terminated NCT01641939 - A Study of Trastuzumab Emtansine Versus Taxane in Participants With Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Advanced Gastric Cancer Phase 2/Phase 3
Recruiting NCT05107674 - A Study of NX-1607 in Adults With Advanced Malignancies Phase 1
Active, not recruiting NCT04908813 - Study of HLX22 in Combanition With Trastuzumab and Chemotherapy Versus Placebo in Combination With Trastuzumab and Chemotherapy for Treatment of Locally Advanced or Metastatic Gastric Cancer Phase 2
Active, not recruiting NCT04249739 - Pembrolizumab + Capecitabine/Oxaliplatin (CapeOx) -HER2 Nagative and Pembrolizumab + Trastuzumab + Cisplatin/Capecitabine HER2 Positive Phase 2
Recruiting NCT05514158 - To Evaluate the Safety, Tolerability, Pharmacokinetics and Preliminary Efficacy of Disitamab Vedotin Combined With RC98 in the Treatment of Subjects With HER2-expressing Locally Advanced or Metastatic Gastric Cancer (Including AEG) Phase 1
Recruiting NCT04931654 - A Study to Assess the Safety and Efficacy of AZD7789 in Participants With Advanced or Metastatic Solid Cancer Phase 1/Phase 2
Recruiting NCT03175224 - APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors Phase 2