View clinical trials related to Gait Disorders in Children.
Filter by:Cerebral palsy (CP) is defined as a disorder of the developing brain that causes movement disorders and may be associated with other neurologically based disorders. Gait abnormalities are a direct result of damage to the motor areas of the brain and include symptoms such as spasticity, dystonia, weakness, loss of selective muscle control, dependence on primitive reflexes, abnormal muscle and inadequate balance reactions. Walking backwards during activities of daily living is as important as walking forward. Some of these activities are stepping back towards the chair, stepping back when opening the door and pulling the door, reflexively leaning back when suddenly encountering an obstacle or uneven ground. In addition, backward walking is defined as a more complex activity that requires more neuromuscular control, proprioception sense, and protective reflex activation than forward walking. Selective motor control is an essential part of typical human movement, allowing for smooth and discrete control of joint movement. Impaired selective motor control causes abnormal reciprocal muscle activations or involuntary combined movements, leading to difficulties with coordination, balance, walking efficiency, and symmetry. Impaired selective motor control is associated with poor gross motor function and balance control, severe general gait deviations, and decreased walking speed. The aim of this study is to examine the relationship between forward and backward walking and selective motor control, trunk control and balance in children with cerebral palsy.
The purpose of this study was to investigate the effects of exoskeleton robot gait training on activities of daily living, gross motor function evaluation, balance and walking ability in adolescents with cerebral palsy.