Parkinson Disease Clinical Trial
Official title:
Experimentally-induced Freezing of Gait in Parkinson's Disease by Modulating Step Length/Asymmetry and Cognitive/Visual Loading
Sample Size N= 10 Parkinson's disease patients with self-reported freezing of gait and 10 without self-reported freezing of gait (in total, 20 Parkinson's disease patients) Accrual Period Single visit for 2 hours Study Design This is a cross-sectional study with an intervention to provoke freezing of gait using split-belt treadmill in Parkinson's disease patients with a randomized cross-over design. After baseline evaluation (a), interventions to induce freezing of gait will be performed in a randomized order to avoid a practice/fatigue effect in the following conditions using combination of 4 interventions: walking speed (fast walking vs. natural walking), visual loading (passing through narrow pathway), cognitive loading (dual task), and asymmetry (best side reduction). 1. Natural and fast walking with self-paced mode to access gait parameters and decide the speed for evaluation (3 mins X2) remaining assessment will be randomized and performed on the treadmill: 2. Natural and fast walking passing through narrow pathway (2 mins X2) 3. Natural and fast walking with dual task (2 mins X2) 4. Natural and fast walking passing through narrow pathway and during cognitive dual task (2 mins X2) 5. Natural and fast walking reducing the best side (2 mins X2) 6. Natural and fast walking reducing the best side passing through narrow pathway (2 mins X2) 7. Natural and fast walking reducing the best side with cognitive dual task (2 mins X2) 8. Natural and fast walking reducing the best side passing through narrow pathway and during cognitive dual task (2 mins X2) - Conditions b-h will be carried out on a split-belt treadmill (Grail systems®, by Motek, Netherlands). - (b-i) freezing of gait episodes will be identified with synchronized videorecordings (screening done by two independent observers). Episodes identified by both observers will be confirmed and measured by comparing the relative height of metatarsal and heel markers of each foot, in keeping with a previous study evaluating freezing of gait episode on a treadmill. Study Duration 1. (Baselines evaluation) Enrolment and assessment (Montreal cognitive assessment, Movement Disorders Society-unified Parkinson's disease rating scale part 2, 3 and 4, Activities-Specific Balance Confidence Scale, Parkinson's disease questionnaire-39, and New freezing of gait questionnaire) 2. (a) Formal gait analysis using split-belt treadmill (Grail systems®, by Motek, Netherlands) will be done for baseline assessment (normal walking) and to test patient's ability for fast walking (25% of the normal speed). 3. (b-h) Provocation of freezing of gait at split-belt treadmill (Grail systems®, by Motek, Netherlands) with natural and fast walking with/without additional loading or interventions on the asymmetry Total time= 2 hours Study Intervention Freezing of gait will be provoked based on the situations combined among 4 conditions; (1) interventions on asymmetry, (2) cognitive dual task, (3) visual loading - passing through narrow pathway, and (4) walking speed at a split-belt treadmill. - Fast walking will be defined as walking 25% faster than the normal comfortable walking. Subjects who cannot reach this speed, will be asked to walk at their safest maximum speed. - Passing narrow pathway will be done by walking in a "rope bridge" scene in virtual reality (VR). - Dual cognitive task will be carried out with serial subtraction prompted on the screen in VR. - Best side reduction will be defined as 25% slower speed on the best side based on the speed during the initial natural walking with tied configuration setting based on a previous study.3 - Condition b-h will be randomized.
n/a
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05415774 -
Combined Deep Brain Stimulation in Parkinson's Disease
|
N/A | |
Recruiting |
NCT04691661 -
Safety, Tolerability, Pharmacokinetics and Efficacy Study of Radotinib in Parkinson's Disease
|
Phase 2 | |
Active, not recruiting |
NCT05754086 -
A Multidimensional Study on Articulation Deficits in Parkinsons Disease
|
||
Completed |
NCT04045925 -
Feasibility Study of the Taïso Practice in Parkinson's Disease
|
N/A | |
Recruiting |
NCT04194762 -
PARK-FIT. Treadmill vs Cycling in Parkinson´s Disease. Definition of the Most Effective Model in Gait Reeducation
|
N/A | |
Completed |
NCT02705755 -
TD-9855 Phase 2 in Neurogenic Orthostatic Hypotension (nOH)
|
Phase 2 | |
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Recruiting |
NCT05830253 -
Free-living Monitoring of Parkinson's Disease Using Smart Objects
|
||
Recruiting |
NCT03272230 -
Assessment of Apathy in a Real-life Situation, With a Video and Sensors-based System
|
N/A | |
Recruiting |
NCT06139965 -
Validity and Reliability of the Turkish Version of the Comprehensive Coordination Scale in Parkinson's Patients
|
||
Completed |
NCT04580849 -
Telerehabilitation Using a Dance Intervention in People With Parkinson's Disease
|
N/A | |
Completed |
NCT03980418 -
Evaluation of a Semiconductor Camera for the DaTSCAN™ Exam
|
N/A | |
Completed |
NCT04477161 -
Effect of Ketone Esters in Parkinson's Disease
|
N/A | |
Completed |
NCT04942392 -
Digital Dance for People With Parkinson's Disease During the COVID-19 Pandemic
|
N/A | |
Terminated |
NCT03446833 -
LFP Beta aDBS Feasibility Study
|
N/A | |
Completed |
NCT03497884 -
Individualized Precise Localization of rTMS on Primary Motor Area
|
N/A | |
Completed |
NCT05538455 -
Investigating ProCare4Life Impact on Quality of Life of Elderly Subjects With Neurodegenerative Diseases
|
N/A | |
Recruiting |
NCT04997642 -
Parkinson's Disease and Movement Disorders Clinical Database
|
||
Completed |
NCT04117737 -
A Pilot Study of Virtual Reality and Antigravity Treadmill for Gait Improvement in Parkinson
|
N/A | |
Recruiting |
NCT03618901 -
Rock Steady Boxing vs. Sensory Attention Focused Exercise
|
N/A |