View clinical trials related to Fall Risk.
Filter by:The research objective of this study is to determine whether an intervention and associated robotic device called "Assisted Movement with Enhanced Sensation (AMES) can be used to enhance balance recovery following an unexpected loss of balance by conditioning areas of the brain involved in lower-limb (LL) motor control. It is hypothesized that AMES can improve balance recovery, gait, and reduce falls in near-frail elderly people by improving LL strength, speed, and coordination. AMES, is a medical intervention and robotic device originally developed to aid patients' recovery from injuries to the central nervous system that limit movement. Earlier published studies demonstrated a unique property of AMES, namely that it is capable of reducing sensorimotor impairment in the severely impaired, an underserved population of patients with brain and spinal cord injuries. AMES applies assisted movement, biofeedback, and sensory stimulation simultaneously and non-invasively to the upper or lower limb, the initial intent being to address impairments such as weakness, spasticity, sensory loss, and dyssynergia (i.e., co-contraction). These reductions in impairment are achieved through cortical plasticity. In the present study, the same methodology will be applied to the lower limbs of the near-frail elderly to reduce falls by training faster reaction times, stronger reactions, and more coordinated recoveries from slips and trips