View clinical trials related to Essential Thrombocythemia.
Filter by:Study GLB-001-02 is a phase 1, open-label clinical study to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and preliminary efficacy of GLB-001 in study participants with relapsed or refractory or intolerant myeloid malignancies including polycythemia vera (PV), essential thrombocythemia (ET), myelofibrosis (MF), lower-risk myelodysplastic syndrome (LR-MDS), higher-risk myelodysplastic syndromes (HR-MDS), and acute myeloid leukemia (AML). This study consists of 3 parts, dose escalation (Phase 1a), dose exploration (Phase 1b) and dose expansion (Phase 1c). Dose escalation (Phase 1a) and dose exploration (Phase 1b) will evaluate the safety, tolerability, PK, PD and preliminary efficacy of GLB-001, administered orally, in study participants with PV/ET, or study participants with MF/LR-MDS/HR-MDS/AML, respectively. Dose expansion (Phase 1c) will be followed to determine the relationships among dose, exposure, toxicity, tolerability and clinical activity, to identify minimally active dose, and to select the recommended dose(s) for phase 2 study. Approximately 108 study participants may be enrolled in the study.
Prospective study for functional and phenotypic characterization of monocytes in philadelphia-negative myeloproliferative neoplasms
The purpose of this study is to characterize safety and to determine the Recommended Phase 2 Dose (RP2D[s]) and optimal dosing schedule(s) of JNJ-88549968, in part 1 (Dose Escalation); to characterize the safety of JNJ- 88549968 at RP2D(s), in part 2 (Cohort Expansion).
This is a study evaluating the safety and efficacy of bomedemstat (MK-3543) compared with the best available therapy (BAT) in participants with essential thrombocythemia (ET) who have an inadequate response to or are intolerant of hydroxyurea. The primary study hypothesis is that bomedemstat is superior to the best available therapy with respect to durable clinicohematologic response (DCHR).
This phase II trial evaluates how a curcumin supplement (C3 complex/Bioperine) changes the inflammatory response and symptomatology in patients with clonal cytopenia of undetermined significance (CCUS), low risk myelodysplastic syndrome (LR-MDS), and myeloproliferative neoplasms (MPN). Chronic inflammation drives disease development and contributes to symptoms experienced by patients with CCUS, LR-MDS, and MPN. Curcumin has been shown to have anti-inflammatory and anti-cancer properties and has been studied in various chronic illnesses and hematologic diseases.
This is a multinational, multicenter, prospective and retrospective, observational, cohort study of patients with myeloproliferative neoplasm.
A Single-arm, Multicenter Study to Assess the Efficacy, Safety, and Tolerability of Ropeginterferon alfa-2b-njft (P1101) in Adult Patients with Essential Thrombocythemia
Philadelphia-negative myeloproliferative neoplasms (MPN) are frequent and chronic myeloid malignancies including Polycythemia Vera (PV), essential thrombocythemia (ET), Primary Myelofibrosis (PMF) and Prefibrotic myelofibrosis (PreMF). These MPNs are caused by the acquisition of mutations affecting activation/proliferation pathways in hematopoietic stem cells. The principal mutations are JAK2V617F, calreticulin (CALR exon 9) and MPL W515. ET or MFP/PreMF patients who do not carry one of these three mutations are declared as triple-negative (3NEG) cases even if they are real MPN cases. These diseases are at high risk of thrombo-embolic complications and with high morbidity/mortality. This risk varies from 4 to 30% depending on MPN subtype and mutational status. In terms of therapy, all patients with MPNs should also take daily low-dose aspirin (LDA) as first antithrombotic drug, which is particularly efficient to reduce arterial but not venous events. Despite the association of a cytoreductive drug and LDA, thromboses still occur in 5-8% patients/year. All these situations have been explored in biological or clinical assays. All of them could increase the bleeding risk. We should look at different ways to reduce the thrombotic incidence: Direct Oral Anticoagulants (DOAC)? In the general population, in medical or surgical contexts, DOACs have demonstrated their efficiency to prevent or cure most of the venous or arterial thrombotic events. At the present time, DOAC can be used in cancer populations according to International Society on Thrombosis and Haemostasis (ISTH) recommendations, except in patients with cancer at high bleeding risk (gastro-intestinal or genito-urinary cancers). Unfortunately, in trials evaluating DOAC in cancer patients, most patients have solid rather than hematologic cancers (generally less than 10% of the patients, mostly lymphoma or myeloma). In cancer patients, DOAC are also highly efficient to reduce the incidence of thrombosis (-30 to 60%), but patients are exposed to a higher hemorrhagic risk, especially in digestive cancer patients. In the cancer population, pathophysiology of both thrombotic and hemorrhagic events may be quite different between solid cancers and MPN. If MPN patients are also considered to be cancer patients in many countries, the pathophysiology of thrombosis is quite specific (hyperviscosity, platelet abnormalities, clonality, specific cytokines…) and they are exposed to a lower risk of digestive hemorrhages. It is thus difficult to extend findings from the "general cancer population" to MPN patients. Unfortunately, only scarce, retrospective data regarding the use of DOAC in MPNs are available data. We were the first to publish a "real-life" study about the use, the impact, and the risks in this population. In this local retrospective study, 25 patients with MPN were treated with DOAC for a median time of 2.1 years. We observed only one thrombosis (4%) and three major hemorrhages (12%, after trauma or unprepared surgery). Furthermore, we have compared the benefit/risk balance compared to patients treated with LDA without difference. With the increasing evidences of efficacy and tolerance of DOAC in large cohorts of patients including cancer patients, with their proven efficacy on prevention of both arterial and venous thrombotic events and because of the absence of prospective trial using these drugs in MPN patients, we propose to study their potential benefit as primary thrombotic prevention in MPN.
This is a phase I/II study evaluating the optimal dose of N-acetylcysteine (N-AC) in patients with myeloproliferative neoplasms (MPN).
This phase II clinical trial evaluates whether a modified modality of conditioning reduces treatment-related mortality (TRM) in patients who undergo a hematopoietic stem cell transplant (HSCT) for a hematological malignancy. HSCT is a curative therapy for many hematopoietic malignancies, however this regimen results in higher rates of TRM than other forms of treatment. In recent years, less intense conditioning regimens with radiation and chemotherapy prior to HSCT have been developed. Radiation therapy uses high energy sources to kill cancer cells and shrink tumors while chemotherapy drugs like fludarabine and cyclophosphamide work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This study evaluates whether a two-step approach with lower-intensity regimens of these treatments prior to HSCT reduces the rate of TRM.