View clinical trials related to Encephalomyelitis.
Filter by:This study aims to collect and identify key outcome measures or disease parameters in ME/CFS that are altered during elevated symptoms relative to baseline by gathering information before and after symptom provocation using a two-day cardiopulmonary exercise test.
Background: The cause of fatigue is not well understood. It can be felt differently by different people. Some people think there are different types of fatigue, with different causes. Researchers think a therapy to treat one type of fatigue in one condition should be able to treat that type of fatigue in other conditions. Objective: To understand the types of fatigue. Eligibility: Adults 18 and older who have felt fatigue for more than a month, and non-fatigued adults Design: Participants will be screened with a physical exam, their medical history, a vision test, and blood and urine tests. Participants will begin to track the foods they eat. This study will involve up to 10 visits. Each visit will last no more than 4 hours. In Stage 1, participants will have an interview, fill out questionnaires, and play computer games. They will take walking and handgrip tests. They will give blood, urine, and saliva samples. They will wear a wrist monitor at home for 7 days and write down their activities. They will be put into a group: fatigue or non-fatigued control. In Stage 2, participants will answer questionnaires and give a blood sample. They will have heart tests. They may take exercise and lung function tests that include wearing a nose clip. They may have an optional brain MRI: They may wear an electrode cap on their head during the scan to measure brain activity. They will lie on table that slides into a cylinder. They may perform tasks in the scanner. After the study, participants might be contacted about other studies.
Central Nervous System (CNS) demyelinating conditions include multiple sclerosis (MS), Acute Disseminated Encephalomyelitis (ADEM), Neuromyelitis Optica Spectrum Disorder (NMOSD), Optic Neuritis (ON) and Transverse Myelitis (TM). The symptoms of these conditions are quite variable from patient to patient, but can include motor, sensory, visual, gait and cognitive changes. Conventional MRI can be used to look for new anatomic changes, but fails to measure underlying biochemical changes in brain tissue. The purposes of this study are to identify the biologic and anatomic correlations between cognitive profiles and disease activity using MRI imaging techniques.
The primary objective of the study is to evaluate the safety and immunogenicity of non-adjuvanted and adjuvanted monovalent VEE VLP Vaccine in healthy adults (ages 18-50 years) when administered via intramuscular (IM) injection at escalating doses of 2 μg, 10 μg, and 20 μg as a 2-dose primary series (Day 0, Day 28) with a Day 140 booster dose. The secondary objective of the study is to evaluate immunogenicity of the vaccine at the aforementioned time points
This is a single-center stratified (on gender and donor), block randomized, placebo-controlled, parallel group trial with 12-months follow-up of 80 chronic fatigue syndrome/encephalomyelitis (CFS/ME) participants. Participants will be randomized to treatment by preprocessed thawed donor fecal microbiota transplant or preprocessed thawed autologous fecal microbiota transplant. Primary endpoint is the efficacy of FMT at three months by the Fatigue Severity Scale. The investigators will use patient reported outcomes for primary and secondary outcome measures. Previous studies suggest that a dysbiosis of the gut microbiota may be a key feature in CFS/ME. We hypothesize that A: CFS/ME is caused by a dysbiosis in the gut flora causing barrier leakage of bacterial products, a low grade systemic immune activation and disturbances in the host energy metabolism. B: Recovery of a normal gut flora by fecal microbiota transplantation (FMT) alleviates symptoms and may even induce remission of CFS/ME. This project aims to determine if there is a true cause and effect relationship between a dysbiotic gut flora and CFS/ME by testing if treatment of the observed dysbiosis by FMT also can resolve CFS/ME symptoms. In this process, collection of blood, fecal, and urine samples before and after FMT will open the possibility to explore the relationship between the gut flora, immune response, host energy metabolism and CFS/ME using technologies of microbiomics, metabolomics and immunological characterizations for a better understanding of the pathobiology of CFS/ME.
This study evaluates the correlation between the 6-min walking test (6MWT) with gases measurement, and the peak cardiopulmonary exercise testing (CPET) using incremental cycling with gases and workload measurement, in order to determine if the 6MWT detects impairment in exercise tolerance and if it avoids the post-exertional malaise that the peak CPET causes on decreasing levels of physical activity, in participants affected by chronic fatigue syndrome/ myalgic encephalomyelitis (CFS/ME). Physical activity level at baseline (usual activity, the parcipant will not be given any directions) will be recorded during 7 days, 24 hours/day. Afterwards, the 6MWT will be performed. After this test, the physical activity level will be collected again during 7 days, 24 hours/day. Peak CPET will be carried out 14 days after 6MWT to make sure that the basal levels are recovered, and finally, physical activity level will be collected again during 7 days, 24 hours/day.
Myalgic encephalomyelitis/Chronic fatigue syndrome (ME/CFS), otherwise known as Chronic fatigue syndrome (CFS) or myalgic encephalomyelitis (ME), is an under-recognized disorder whose cause is not yet understood. Suggested theories behind the pathophysiology of this condition include autoimmune causes, an inciting viral illness, and a dysfunctional autonomic nervous system caused by a small fiber polyneuropathy. Symptoms include fatigue, cognitive impairments, gastrointestinal changes, exertional dyspnea, and post-exertional malaise. The latter two symptoms are caused in part by abnormal cardiopulmonary hemodynamics during exercise thought to be due to a small fiber polyneuropathy. This manifests as low biventricular filling pressures throughout exercise seen in patients undergoing an invasive cardiopulmonary exercise test (iCPET) along with small nerve fiber atrophy seen on skin biopsy. After diagnosis, patients are often treated with pyridostigmine (off-label use of this medication) to enhance cholinergic stimulation of norepinephrine release at the post-ganglionic synapse. This is thought to improve venoconstriction at the site of exercising muscles, leading to improved return of blood to the heart and increasing filling of the heart to more appropriate levels during peak exercise. Retrospective studies have shown that noninvasive measurements of exercise capacity, such as oxygen uptake, end-tidal carbon dioxide, and ventilatory efficiency, improve after treatment with pyridostigmine. To date, there are no studies that assess invasive hemodynamics after pyridostigmine administration. It is estimated that four million people suffer from ME/CFS worldwide, a number that is thought to be a gross underestimate of disease prevalence. However, despite its potential for debilitating symptoms, loss of productivity, and worldwide burden, the pathophysiology behind ME/CFS remains unknown and its treatment unclear. By evaluating the exercise response to cholinergic stimulation, this study will shed further light on the link between the autonomic nervous system and cardiopulmonary hemodynamics, potentially leading to new therapeutic targets.
This study seeks to investigate the safety, tolerability and efficacy of CT38, an experimental peptide administered by subcutaneous infusion, in the treatment of ME/CFS patients.
The purpose of this study is to evaluate the safety and immunogenicity of VEE vaccine, C-84, TSI-GSD 205, Lot 7, Run 1, and collect data on the incidence of occupational VEE infection in vaccinated personnel.
Placebo controlled trial study of efficacy of Kinetic Oscillation Stimulation (KOS) in nasal cavity will be conducted in patients with myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). The outcome of the treatment will be assessed with clinical evaluation of patients, cognitive tests, structural and functional MRI of the brain.