Clinical Trials Logo

Dystonia clinical trials

View clinical trials related to Dystonia.

Filter by:

NCT ID: NCT02957942 Completed - Spasmodic Dysphonia Clinical Trials

rTMS in Spasmodic Dysphonia

Start date: January 2017
Phase: N/A
Study type: Interventional

Focal dystonia is a neurological movement disorder characterized by excessive involuntary muscle contractions of any body part. Spasmodic dysphonia (SD) is a type of focal dystonia characterized by excessive contraction of intrinsic muscles in the larynx, leading to difficulty in speaking and affecting effective communication. The cause of SD is unknown and there are no treatments that produce long-term benefits. Previous studies have suggested that SD and other focal dystonias are associated with decreased inhibition in sensorimotor areas in the brain. However, no studies have investigated the effects of modulating excitability of the laryngeal motor cortex in healthy individuals or SD. The goal of this pilot project is to determine if brain excitability of the laryngeal motor cortex can be changed with low-frequency inhibitory repetitive transcranial magnetic stimulation (rTMS) in individuals with SD and healthy controls. Considering that rTMS at low frequencies (≤1 Hz) produces lasting inhibition in the brain, and that SD is associated with decreased cortical inhibition, the purpose of this pilot study is to determine safety, feasibility and response to 1Hz rTMS to the laryngeal motor cortex in individuals with SD and healthy people. The results will help understand changes associated with the disorder, as well as contribute to the development of future clinical interventions for SD.

NCT ID: NCT02894359 Completed - Clinical trials for Cervical Dystonia, Primary

Computer Modelling of the Cervical Spine Movements in Cervical Dystonia

STICOB
Start date: October 27, 2016
Phase:
Study type: Observational

Cervical dystonia (CD) is a syndrome characterized by sustained and/or phasic involuntary neck muscle activity causing abnormal head postures and movements. It is the most frequent form of adult focal dystonia. The distribution of dystonic muscles is unique for each patient, explaining the variety of patterns encountered. The therapeutic management of CD is essentially local and symptomatic: Botulinum Neurotoxin injections and/or specific retraining therapy programmes. Therefore, analyzing the characteristics of abnormal head movements and identifying the dystonic muscles are the key points of these treatments. To a better understanding of the posture and movement disorders of head and neck, we wish to establish a three-dimensional (3-D) computer model of cervical spine movements of ten healthy subjects built from images obtained with the "Cone Beam " system. Then we will compare the cervical posture and movements for each of ten CD patients matched in age and genre to the computer model. Comparison with patients' images in the axial plane reconstructed by computer with the 3-D computer model will lead to the description of various patterns of CD. Analysis of the musculoskeletal disturbances in CD should be a help to improve the localization of Botulinum Neurotoxin injection sites as well as retraining programmes.

NCT ID: NCT02834871 Completed - Cervical Dystonia Clinical Trials

Integration of the Cervical Proprioceptive Signals in Patients With Cervical Dystonia

STAC2
Start date: March 2015
Phase: N/A
Study type: Interventional

The purpose of this study is to compare the cervical muscular force control , taking into account the proprioceptive signals, in patients with and without cervical dystonia.

NCT ID: NCT02780336 Completed - Dystonia Clinical Trials

Blepharospasm Tools

Start date: August 2016
Phase:
Study type: Observational

The aim of this study is to develop new rating scales to help diagnose and measure the severity of blepharospasm. This is a condition involving a lot of blinking and spasms of eye closure that people can't control. This study will also test some video software to see if it can help diagnose people or tell the severity of disease using only a video recording of an exam. There is an additional plan to create an educational video to teach others the proper use of the scale and video software.

NCT ID: NCT02727361 Completed - Dystonia Clinical Trials

Role of the Striatal Cholinergic System in the Pathophysiology of Dystonia

DYSCHOL
Start date: January 2016
Phase: N/A
Study type: Interventional

Dystonia is defined as a syndrome of sustained muscle contractions resulting in repetitive movements and abnormal postures. DYT1 is the most common form of genetic dystonia, but the link between genomic mutations and phenotypic expression remains largely unknown. Furthermore, secondary forms of dystonia have highlighted the role of the basal ganglia, particularly the putamen in the pathophysiology of the disease. Experimental results in a genetic model of dystonia in rodents suggest that cholinergic inter-neurons (ACh-I) of the putamen play a critical role in the pathological process of plasticity in the cortico-striatal synapse. However, these results have not been demonstrated in humans.

NCT ID: NCT02689466 Completed - Dystonia Clinical Trials

Cholinergic Receptor Imaging in Dystonia

Start date: December 16, 2016
Phase:
Study type: Observational

Background: Dystonia is a movement disorder in which a person s muscles contract on their own. This causes different parts of the body to twist or turn. The cause of this movement is unknown. Researchers think it may have to do with a chemical called acetylcholine. They want to learn more about why acetylcholine in the brain doesn t work properly in people with dystonia. Objective: To better understand how certain parts of the brain take up acetylcholine in people with dystonia. Eligibility: Adults at least 18 years old who have DYT1 dystonia or cervical dystonia. Healthy adult volunteers. Design: Participants will be screened with a medical history, physical exam, and pregnancy test. Study visit 1: Participants will have a magnetic resonance imaging (MRI) scan of the brain. The MRI scanner is a metal cylinder in a strong magnetic field that takes pictures of the brain. Participants will lie on a table that slides in and out of the cylinder. Study visit 2: Participants will have a positron emission tomography (PET) scan. The PET scanner is shaped like a doughnut. Participants will lie on a bed that slides in and out of the scanner. A small amount of a radioactive chemical that can be detected by the PET scanner will be given through an IV line to measure how the brain takes up acetylcholine. ...

NCT ID: NCT02618889 Completed - Clinical trials for Torticollis, Dystonia

OnabotulinumtoxinA in the Management of Psychogenic Dystonia

Start date: January 15, 2016
Phase: Phase 4
Study type: Interventional

The purpose of this research study is to evaluate if patients with psychogenic dystonia treated with onabotulinumtoxinA (BOTOX) injections will demonstrate lower severity and disability at one month and at three months than those having received placebo injections

NCT ID: NCT02558634 Completed - Clinical trials for Deep Brain Stimulation

Thalamic Deep Brain Stimulation for Spasmodic Dysphonia- DEBUSSY Trial

Start date: January 2016
Phase: N/A
Study type: Interventional

Laryngeal Dystonia (LD), also commonly referred to as spasmodic dysphonia, is a neurological voice disorder characterized by involuntary dystonic contractions of the laryngeal muscles. Current treatments such as botox and voice therapy only provide temporary relief and thus, the investigators are exploring new strategies to provide long-term, sustained improvement. Deep Brain Stimulation (DBS) is a neurosurgical procedure that involves the implantation of electrodes to deliver electrical stimuli to specific brain regions. It is the standard surgical treatment for many other movement disorders such as Parkinson's disease, essential tremor, and primary dystonia. This trial has been designed to test the hypothesis that DBS can improve the vocal dysfunction of LD.

NCT ID: NCT02552628 Completed - Wilson's Disease Clinical Trials

WILSTIM - DBS (WILson STIMulation - Deep Brain Stimulation)

WILSTIM DBS
Start date: January 2016
Phase: N/A
Study type: Interventional

Dystonia in Wilson's disease represent a major issue. The persistence of disabling motor symptoms despite medical treatments justifies conducting a study on deep brain stimulation (DBS) in Wilson's disease (WD). For bradykinetic patients, subthalamic nucleus (STN) could be considered as a better target than the globus pallidus (GPi). For patients with hyperkinetic dystonia, the internal globus pallidus (GPi) will be chosen as the target of DBS. The investigators hypothesize that STN DBS will improve Wilson's disease patients, who, despite copper chelators drugs, are still impaired by severe dystonia and akinesia (more or less associated with other movement disorders). The investigators primary objective is to demonstrate the efficacy of STN/GPi DBS on dystonia associated with Wilson's disease. Secondary objectives: - To evaluate the impact of STN/GPi DBS on other movements disorders (tremor, Parkinsonism, chorea) observed in Wilson's disease. - To describe cognitive status of patients and to evaluate the consequences of STN/GPi DBS on cognition and behavioral aspects of the disease. - To evaluate the consequences of the stimulation on speech and swallowing. - To evaluate the social impact of STN/GPi DBS in Wilson's disease. - To evaluate the safety of STN/GPi DBS in the specific context of Wilson's disease.

NCT ID: NCT02542839 Completed - Dystonia Clinical Trials

rTMS and Botulinum Toxin in Primary Cervical Dystonia

Start date: November 2015
Phase: N/A
Study type: Interventional

Primary cervical dystonia (PCD) is the most common form of focal dystonia. PCD is frequently reported as a source of disability, decreased quality of life, and social stigma. Botulinum toxin (BoNT) is the gold standard treatment for PCD. The average duration of benefits from BoNT injections was about 9.5 weeks and BoNT treatment is known to provide only pure symptomatic benefits and does not seem to modify the disease pathophysiology. The investigator plans to use repetitive transcranial magnetic stimulation (rTMS) therapy as an adjunctive therapy in combination with BoNT injections as a novel approach to treat PCD. The primary goal of this study is to compare standard treatment with BoNT versus BoNT combined with a two week course of rTMS.