View clinical trials related to Dystonia.
Filter by:The main objective of the trial is to study the technical feasibility of the implantation of a new electrode Monocontact deep brain stimulation electrode in dystonia.
Background: - People with dystonia have muscle contractions they can t control. These cause slow, repeated motions or abnormal postures. People with dystonia have abnormalities in certain parts of the brain. Researchers want to study the activity of two different brain areas in people with writer s cramp and cervical dystonia. Objective: - To compare brain activity in people with dystonia to that in healthy people. Eligibility: - Right-handed people ages of 18-65 with cervical dystonia or writer s cramp. - Healthy volunteers the same ages. Design: - Participants will be screened with a physical exam. They will answer questions about being right- or left-handed. - At study visit 1, participants will:<TAB> - Have a neurological exam. - Answer questions about how their disease impacts their daily activities. - Have a structural magnetic resonance imaging (MRI) scan. Participants will lie on a table that can slide <TAB>in and out of a metal cylinder. This is surrounded by a strong magnetic field. - Do 2 simple computer tasks. - At study visit 2: - Participants will have transcranial magnetic stimulations (TMS) at 2 places on the head. Two wire coils will be held on the scalp. A brief electrical current creates a magnetic pulse that affects brain activity. Muscles of the face, arm, or leg might twitch. Participants may have to tense certain muscles or do simple tasks during TMS. They may be asked to rate any discomfort caused by TMS. - Muscle activity in the right hand will be recorded by electrodes stuck to the skin of that hand.
A clinical trial is planned to study the effects of cannabis on dystonia and spasticity in children with neurological diseases. The clinical trial will include 40 children divided into two groups: children with spasticity and dystonia due to cerebral palsy, and children with spasticity and dystonia due to genetic neurodegenerative diseases. Each group will be randomly divided into two arms and will receive Avidekel cannabis oil 6-to-1 ratio of CBD to THC or enriched Avidekel cannabis oil 20-to-1 ratio of CBD to THC. During the study, various variables will be collected including: medication intake, spasticity, dystonia score, pain scale, restlessness scale, quality of life measures, safety tests, side effects, and an addiction test. The investigators hypothesize that cannabis consumption will reduce dystonia and spasticity in children with motor disability related to genetic neurodegenerative diseases and cerebral palsy and as a result improve motor function, non-motor functions and quality of life.
Deep brain stimulation (DBS) is an effective surgical therapy for select Dystonia patients who are refractory to medications or who have generalized symptoms (e.g. patients with Early-Onset Primary Dystonia(DYT1) mutations and other dystonia subtypes). DBS patients typically experience significant improvement in disabling symptoms; however, detailed programming is always required, and stimulation-induced side effects commonly emerge. Clinicians may empirically vary voltage, pulse width, frequency and also the active contacts on the DBS lead to achieve observed optimal benefits. The majority of DBS patients undergo repeat surgeries to replace the implantable pulse generator (IPG) every 2.5 to 5 years. It has been demonstrated that, in dystonia patients, that higher settings are required for adequate symptomatic control, and that neurostimulators have a considerably shorter life when compared to neurostimulators from patients with essential tremor or Parkinson's disease. Additionally, several smaller studies have suggested that alternative pulse stimulation properties and pulse shape modifications can lower IPG battery consumption. Newer patterns of stimulation (regularity of pulses and shapes of pulses) have not been widely tested in clinical practice, and are not part of the current FDA device labeling. Novel patterns of stimulation do however, have the potential to improve symptoms, reduce side effects, and to preserve the neurostimulator life. The current research proposal will prospectively study biphasic pulse stimulation paradigms and its effects on dystonic symptoms. The investigators aim to demonstrate that we can tailor DBS settings to address dystonia symptoms, improve the safety profile, characterize distinct clinical advantages, and carefully document the safety and neurostimulator battery consumption profile for biphasic stimulation.
The purpose of the proposed research is to determine if Osteopathic manipulative medicine (OMM) used alone or in combination with the standard treatment of botulinum toxin intramuscular injections improves motor function and quality of life amongst people with cervical (neck) dystonia.
This study seeks to compare the use of ultrasound and electrophysiologic techniques to target muscles for the treatment of spasticity and focal dystonia of the limbs. The purpose of this study is to investigate the use of two ways of locating the muscle for botulinum toxin (BoNT) injection for the treatment of focal hand dystonia and upper limb spasticity. Electrophysiologic guidance, using electrical stimulation, and ultrasound are the standard ways of locating muscles during a treatment of BoNT injection.
Background: - It is hard for people with arm spasticity and focal hand dystonia to control their arm and hand muscles. They are often treated with botulinum toxin (BoNT) injections. Electromyography with electrical stimulation (e-stim) and ultrasound are used to find muscles for BoNT injection. Researchers want to learn which method is faster and more comfortable. Objective: - To compare 2 ways of finding muscles for BoNT injection for the treatment of focal hand dystonia and upper limb spasticity. Eligibility: - Adults 18 and older with focal hand dystonia or arm spasticity who have been getting onabotulinumtoxin-A injections in protocol 85-N-0195. Design: - Participants will be screened with medical history and physical exam. - Participants will push or pull on a device that measures arm strength. They will have a neurologic exam. Women will have a pregnancy test. - Participants will have a BoNT injection using either e-stim or ultrasound. - For e-stim, sticky pads will be placed on the arm. A needle will be placed in the muscle. A small electric shock will be given through the needle. Then the injection will be given. - For ultrasound, a probe will be moved across the skin. A screen will show an image of the muscles. Then the injection will be given. - Participants will have a second injection 3 months later. They will have the method that was not used for their first injection. - After each session, participants will rate their experience. - Participants will have follow-up visits 1 month after each injection. They will be examined and asked about their response to treatment. Arm strength will be measured.
Deep brain stimulation (DBS) is an FDA approved, and widely used method for treating the motor symptoms of Parkinson's disease (PD), Essential Tremor (ET), Dystonia and Obsessive Compulsive disorder (OCD). Over 100,000 patients worldwide have now been implanted with DBS devices. Current approved methods to locate the DBS target regions in the brain use a combination of stereotactic imaging techniques and measurements of the electrical activity of brain cells. As part of the standard clinical technique, electrical data are collected from individual nerve cells. The target brain region emits unique electrical signals. At certain brain locations, during DBS surgery, additional electrical data that are generated in response to sound will be collected. Regions of the brain that have a decreased response to repeated sound (auditory gating) may be important DBS targets for improving thinking. The aims are (i) during DBS surgery, in addition to EEG, use microelectrodes in the brain to find brain regions, along the normal path to the DBS target, where auditory gating occurs and then (ii) determine if stimulation of the identified region(s) alters auditory gating measured by EEG. Also an additional aim (iii) is to measure electrical activity at the scalp with EEG to characterize auditory gating in patients before and after DBS surgery and also a healthy control population.
The purpose of this study was to compare the subthalamic nucleus(STN) with the globus pallidus internus(GPi) as a stimulation target for deep brian stimulation(DBS) for medically refractory dystonia.
The proposed study is to evaluate the effectiveness of ExAblate Transcranial MRgFUS as a tool for creating a unilateral lesion in the Vim thalamus or the globus pallidus (GPi) in patients with treatment-refractory symptoms of movement disorders.