Clinical Trials Logo

Disorder of Consciousness clinical trials

View clinical trials related to Disorder of Consciousness.

Filter by:
  • Active, not recruiting  
  • Page 1

NCT ID: NCT05747170 Active, not recruiting - Clinical trials for Disorder of Consciousness

Olfactory Stimulation in Severe Brain Injury

Start date: October 15, 2021
Phase: N/A
Study type: Interventional

The management of patients with disorders of consciousness (DoC) represents a topic of great importance and topicality in the medical-scientific field because of the complexity and extent of associated disabilities and the difficulty in identifying effective therapeutic approaches. Despite significant advances in neuroscience, much remains to be elucidated about the mechanisms that regulate consciousness, and which of these to act on to stimulate plasticity and thus promote responsiveness and functional recovery in patients. Evidence on treatments that promote arousal and communication skills in individuals with DoC is still limited. Among the possible interventions proposed in the literature, sensory stimulation would act by stimulating synaptic plasticity, counteracting the sensory deprivation to which these patients are exposed. Published studies on the topic have produced results that are not unique and difficult to compare across different stimulation protocols (content, intensity, frequency, modality), settings and patient populations.

NCT ID: NCT05734183 Active, not recruiting - Clinical trials for Acquired Brain Injury

Multisensorial IMmersive Experiences (MIME) in Disorders of Consciousness

MIME
Start date: October 29, 2021
Phase: N/A
Study type: Interventional

Disorder of consciousness (DoC) is a state in which consciousness is altered because of brain damage and can occur under a variety of conditions: in fact, the most frequent causes of DoC are vascular disease, head trauma, and cerebral hypoxia. DoCs result from the loss of regulation of neural function of the two components of consciousness, alertness and awareness. Depending on the patient's behavior and responsiveness, DoCs can be identified in different states, from coma to persistent vegetative state (VS) to intermittent minimally conscious state (MCS). Regarding the prognosis of recovery, in patients with DoC the chance of having functional improvement decreases with time, although some positive functional changes have been observed in chronic patients. Therapies for DoC include some drugs, such as dopaminergic, GABAergic and amantadine drugs, which work to facilitate the recovery of consciousness. Neurorehabilitation, however, seems to be the most recognized intervention that aims to strengthen, in uninjured brain regions, the spontaneous neuroplasticity that occurs to compensate for lost function. Simultaneous stimulation of multiple senses, such as hearing, sight and smell, provides the neural network with more stimuli that are more effective than a single stimulus. In fact, multisensory stimuli can more easily activate attention because cortical processing is predominantly multimodal. As for content, it would seem that those with autobiographical and emotionally salient character could engage multiple brain networks and have priority access to attention. Numerous trials show that stimulus-containing content led to increased behavioural activity, improving self-awareness in patients with DoC. Considering that a communication system that can combine both visual and auditory channels proves to be more effective than a "single-sense" channel, multisensory stimulation is likely to provide simultaneous activation of different brain areas by enhancing plasticity processes. Furthermore, the intensity of stimulation could be one of the main variables with greater impact on the patient: in fact, higher intensity would correspond to a greater effect on the brain.

NCT ID: NCT03826407 Active, not recruiting - Clinical trials for Disorder of Consciousness

Development of a Point of Care System for Automated Coma Prognosis

Start date: October 1, 2019
Phase:
Study type: Observational

Electroencephalogram/event-related potentials (EEG/ERP) data will be collected from 50 participants in coma or other disorder of consciousness (DOC; i.e., Unresponsive Wakefulness Syndrome [UWS] or Minimally Conscious State [MCS]), clinically diagnosed using the Glasgow Coma Scale (GCS). For coma patients, EEG recordings will be conducted for up to 24 consecutive hours at a maximum of 5 timepoints, spanning 30 days from the date of recruitment, to track participants' clinical state. For DOC patients, there will be an initial EEG recording up to 24 hours, with possible subsequent weekly recordings up to 2 hours. An additional dataset from 40 healthy controls will be collected, each spanning up to a 12-hour recording period in order to formulate a baseline. Collected data are to form the basis for automatic analysis and detection of ERP components in DOC, using a machine learning paradigm. Salient features (i.e., biomarkers) extracted from the ERPs and resting-state EEG will be identified and combined in an optimal fashion to give an accurate indicator of prognosis.

NCT ID: NCT03623828 Active, not recruiting - Clinical trials for Disorder of Consciousness

Treating Severe Brain-injured Patients With Apomorphine

Start date: October 3, 2018
Phase: Phase 2
Study type: Interventional

Background: Patients who survive severe brain injury may develop chronic disorders of consciousness. Treating these patients to improve recovery is extremely challenging because of scarce and inefficient therapeutical options. Among pharmacological treatments, apomorphine, a potent direct dopamine agonist, has exhibited promising behavioral effects, but its true efficacy and its mechanism remains unknown. This pilot study aims to verify the effects of apomorphine subcutaneous infusion in patients with disorders of consciousness, investigate the neural networks targeted by this treatment and evaluate the feasibility of a larger double-blind randomized placebo-controlled trial. Methods/design: This study is a prospective open-label pilot clinical trial. Six patients diagnosed with disorders of consciousness will be included to receive a 4-weeks regimen of daily subcutaneous infusions of apomorphine hydrochloride. Patients will be monitored for four weeks before the initiation of the therapy, closely during treatment and they will undergo a 4-weeks inpatient follow-up after washout, as well as a two-year long-term remote follow-up. Shortly before and after the treatment regimen, the subjects will receive a multimodal assessment battery including neuroimaging exams. Primary outcome will be determined as behavioral response to treatment as measured by changes of diagnosis using the Coma Recovery Scale - Revised (CRS-R), while secondary outcome measures will include the Nociception Coma Scale - Revised (NCS-R, circadian rhythm modifications using actimetry, core body temperature recording and night electroencephalography (EEG), positron emission tomography (PET), resting-state high-density EEG and functional magnetic resonance imaging (fMRI). The Glasgow Outcome Scale - Extended (GOS-E) and a phone-adapted version of the CRS-R will be used for long-term follow-up. Statistical analyses will focus on the detection of changes induced by apomorphine treatment at the individual level (comparing data before and after treatment) and at the group level (comparing responders with non-responders). Response to treatment will be measured at four different levels: 1. behavioral response (CRS-R, NCS-E, GOS-E), 2. brain metabolism (PET), 3. network connectivity (resting-state fMRI and high-density EEG) and 4. Circadian rhythm changes (actimetry, body temperature, night EEG). Discussion: Apomorphine is a promising and safe candidate for the treatment of disorders of consciousness but its efficacy, the profile of the responding population and its underlying mechanism remain to be determined. This pilot study will provide unprecedented data that will allow to investigate the response to apomorphine using multimodal methods and shed new light on the brain networks targeted by this drug in terms of metabolism, functional connectivity and behavioral response. The investigators aim to better define the phenotype of potential responders to identify them more easily and develop personalized patient management. This preliminary study will lay ground for a subsequent larger-scale placebo-controlled double-blind trial which will provide quantitative data on effect size controlled for spontaneous recovery.