Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT00629096
Other study ID # TCMR0007/2006
Secondary ID EudraCT 2007-003
Status Completed
Phase Phase 2
First received February 25, 2008
Last updated December 4, 2014
Start date February 2008
Est. completion date December 2010

Study information

Verified date May 2013
Source Andalusian Initiative for Advanced Therapies - Fundación Pública Andaluza Progreso y Salud
Contact n/a
Is FDA regulated No
Health authority Spain: Spanish Agency of Medicines
Study type Interventional

Clinical Trial Summary

The main aim of the study is to determine whether intracoronary infusion of autologous bone marrow mononuclear cells can improve the ventricular function of patients with idiopathic dilated cardiomyopathy.Secondary end-points will be:

1. To evaluate possible changes in patient functional capacity and

2. to identify the biological characteristics of the bone marrow graft that might influence on functional recovery.


Description:

Clinical studies have shown that bone marrow cells can regenerate damaged myocardium after ischemic cardiopathy; however scarce information is available from patients with non-ischemic dilated cardiomyopathy. The aim of the present work is to investigate the role of intracoronary infusion of autologous marrow-derived stem cells in a phase II study in 30 patients with dilated cardiomyopathy.Before the intracoronary transplant of marrow cells as well as six and twelve months thereafter, we will compare the ventricular function measured as left-ventricular ejection fraction by angiography, magnetic resonance imaging, echocardiography and treadmill direct oxygen consumption test. Functional capacity will be monitored throughout the study. In every condition of the study we will perform at least one 30º right anterior oblique left ventricle (LV)angiogram. During each ventriculogram, attempts will be made to obtain a sinus and a post-extrasystolic beat for analysis, in order to study contractile reserve behaviours. Post-extrasystolic beats will be obtained by inducing premature beats with the catheter, once a well opacified cardiac cycle with a normal sinus beat had been filmed. In all instances, the r-r' interval of the induced premature beat and the post-extrasystolic pause will be recorded and measured.

Measurements and calculations will be made off line in our own core lab, where end-diastolic and end-systolic silhouettes were drawn using the CASS system by 2 expert angiographers who were unaware of the patient group or study conditions. LV-volumes and ejection fraction (EF) were derived and regional wall motion was analyzed. The method by Sheehan (1) was used for the asynergy study, dividing the superimposed silhouettes in 100 radii of wall shortening, from end-diastole to end-systole. The abnormal contracting segment (ACS) was defined as the percentage of radii showing akinesia or dyskinesia. The areas of the ventrivular walls having asynergy will be regionally evaluated. The serial evolution of the contractile reserve will be evaluated by the post-extrasystolic potentiation.

Coronary Flow Reserve (CFR) in all 3 coronary arteries will also be evaluated during every hemodynamic study (before treatment and 6 months after treatment). The FloMap® system (Cardiometrics; Mountain View; California) will be used. A 0.014" intracoronary Doppler guide wire will be positioned proximally in every coronary and flow velocities will be recorded continuously. Average peak velocity will be obtained at baseline and after an intracoronary bolus of Adenosine. CFR will be calculated as the ratio between maximal flow velocity during the peak effect of the adenosine injection and basal flow velocity.

Magnetic Resonance Image (MRI) studies will be performed in 3 conditions (baseline, 3-month and 1-year after treatment). Functional parameters will be obtained in each condition, including LV-volumes, LV-mass and ejection fraction

On the morning of cardiac catheterization, up to a volume of 100-150 ml of marrow will be obtained under local anesthesia by aspiration from the iliac crest. Mononuclear Bone Marrow Cells (MNBMCs) will be isolated by density gradient centrifugation over Ficoll-Hypaque technique in a sterile, semiautomated device COBE® 2991. After three washes, MNBMCs will be filtered and resuspended in 10 ml of 0.9% sodium chloride supplemented with preservative-free 0.1% heparin. Aliquots will be obtained for cell count as well as for cytofluorometric and functional analyses of the cell content.

Cells will be directly transferred to all 3 coronary arteries (50% to left anterior descending artery, 25% to the circumflex and 25% to the right coronary artery) by the use of a coaxial balloon catheter, which will be placed proximally at each artery. Balloon size will be selected according to vessel size, in order to achieve complete occlusion of the vessel and to stop flow during cell injection. So, backflow of cells is prevented and distal stagnant flow will facilitate cell exposure. The cell suspension will be injected through the distal tip of the balloon over 2 to 4 minutes.

In addition,we will try to compare all possible changes in functional parameters with biological variables obtained from the marrow graft, such as:

1. Number of cells positive for cluster of differentiation antigen (CD) CD146,CD31, CD133,CD90,CD38, CD117, CD73, CD105, CD45, Vascular endothelial growth factor receptor 2,CXC-chemokine receptor 4 and HLA-DR.

2. Functional characterization of endothelial progenitor cells and mesenchymal stem cells present in the graft by in vitro selective cultures.

3. Analysis of the in vitro chemotactic ability of the infused cells.

4. Determination of lineage-specific cardiac markers GATA-4 and Nk2.5/Csx in the infused marrow-derived cells. Correlations between these biological parameters and the effects on patient`s ventricular function could highlight the role of each of the potential mechanisms implied in cell-mediated myocardial regeneration.


Recruitment information / eligibility

Status Completed
Enrollment 27
Est. completion date December 2010
Est. primary completion date August 2010
Accepts healthy volunteers No
Gender Both
Age group 18 Years to 80 Years
Eligibility Inclusion Criteria:

1. Patients of both genders with established clinical and angiographic diagnosis of Idiopathic Dilated Cardiomyopathy who accept to participate in the trial.

2. They should have symptoms and/or signs of heart failure, despite optimized medical treatment.

3. Angiographic ejection fraction should be less than 50%.

Exclusion Criteria:

1. Associated coronary artery disease.

2. Any history or suspicion of a toxic, pharmacologic or deposit etiology.

3. Absence of resynchronization therapy.

4. Age longer than 80 years.

5. Associated malignant or pre-malignant systemic disease.

6. Associated hematologic disorder.

Study Design

Allocation: Non-Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment


Intervention

Procedure:
Intracoronary infusion of autologous bone marrow cells
Autologous mononuclear bone marrow cells will be administered by intracoronary infusion via a percutaneous catheter

Locations

Country Name City State
Spain Reina Sofía University Hospital Córdoba

Sponsors (2)

Lead Sponsor Collaborator
Fundación Pública Andaluza Progreso y Salud Iniciativa Andaluza en Terapias Avanzadas

Country where clinical trial is conducted

Spain, 

Outcome

Type Measure Description Time frame Safety issue
Primary Improvement of left ventricular function 6 and 12 months No
Secondary Functional status 6 and 12 months No
See also
  Status Clinical Trial Phase
Recruiting NCT05564689 - Absolute Coronary Flow in Patients With Heart Failure With Reduced Ejection Fraction and Left Bundle Branch Block With Cardiac Resynchronization Therapy
Recruiting NCT04982081 - Treating Congestive HF With hiPSC-CMs Through Endocardial Injection Phase 1
Not yet recruiting NCT04703751 - Evaluation of the CIRCULATE Catheter for Transcoronary Administration of Pharmacologic and Cell-based Agents N/A
Recruiting NCT01157299 - Hemodynamic Evaluation of Preload Responsiveness in Children by Using PiCCO N/A
Completed NCT00765518 - Use of Ixmyelocel-T (Formerly Cardiac Repair Cell [CRC] Treatment) in Patients With Heart Failure Due to Dilated Cardiomyopathy (IMPACT-DCM) Phase 2
Completed NCT02115581 - Coenzyme Q10 Supplementation in Children With Idiopathic Dilated Cardiomyopathy Phase 4
Recruiting NCT04246450 - Arrhythmic Risk Stratification in Nonischemic Dilated Cardiomyopathy N/A
Recruiting NCT05799833 - Low QRS Voltages in Young Healthy Individuals and Athletes
Recruiting NCT01914081 - Resveratrol: A Potential Anti- Remodeling Agent in Heart Failure, From Bench to Bedside Phase 3
Recruiting NCT02915718 - A Clinical Study of Immunoadsorption Therapy for Dilated Cardiomyopathy N/A
Recruiting NCT03061994 - Metabolomic Study of All-age Cardiomyopathy N/A
Completed NCT03893760 - Assessment of Right Ventricular Function in Advanced Heart Failure
Not yet recruiting NCT01219452 - Intramuscular Injection of Mesenchymal Stem Cell for Treatment of Children With Idiopathic Dilated Cardiomyopathy Phase 1/Phase 2
Recruiting NCT02175836 - Arrhythmia Prediction Trial N/A
Active, not recruiting NCT00962364 - Long-term Evaluation of Patients Receiving Bone Marrow-derived Cell Administration for Heart Disease
Recruiting NCT05026112 - The Arrhythmogenic Potential of Midwall Septal Fibrosis in Dilated Cardiomyopathy
Recruiting NCT05237323 - Micophenolate Mofetil Versus Azathioprine in Myocarditis Phase 3
Recruiting NCT04649034 - Intraventricular Stasis In Cardiovascular Disease
Suspended NCT03071653 - Left Cardiac Sympathetic Denervation for Cardiomyopathy Feasibility Pilot Study Phase 2
Completed NCT02619825 - Non-Invasive Evaluation of Myocardial Stiffness by Elastography in Pediatric Cardiology (Elasto-Pédiatrie) N/A