View clinical trials related to Diabetic Neuropathies.
Filter by:This study aimed to evaluate the efficacy of ultrasound (US)-guided posterior tibial nerve pulsed radiofrequency (PTN PRF) in the treatment of painful diabetic peripheral neuropathy (DPNP) refractory to conservative treatments. For this evaluation, the visual analog scale (VAS), PainDETECT neuropathic pain scores, and Jenkins Sleep Scale (JSS) will be used before and after the PTN PRF.
Diabetic cardiac autonomic neuropathy (DCAN) is a common chronic complication that reduces survival in patients with diabetes. Epidemiological surveys have shown that the prevalence of DCAN is 25-75% in people with type 2 diabetes. The onset of DCAN is insidious and easy to be ignored in the early stage. With the progression of the disease, the following clinical symptoms gradually appear, including reduced heart rate variability, exercise intolerance, resting tachycardia, orthostatic hypotension, painless myocardial infarction and even sudden death, which seriously endanger the life and health of type 2 diabetes patients. Existing literature has shown that glucagon-like peptide-1 receptor agonist (GLP-1RA) can improve diabetic peripheral neuropathy and diabetic cognitive dysfunction, but there are few studies on improving diabetic autonomic neuropathy. Insulin resistance is an important risk factor for DCAN. Patients with type 2 diabetes are characterized by insulin resistance, and GLP-1RA is recognized as a drug to improve insulin resistance and control blood sugar in patients with diabetes. In this study, GLP-1RA was used to intervene patients with type 2 diabetes, and the changes in blood sugar control and insulin resistance status of patients were followed up. Special attention was paid to the improvement of autonomic neuropathy in diabetic patients.
To compare the Effects of Modified Otago Exercise and Action Observation Training on strength, functional mobility and fall risk in patients with diabetic neuropathy.
Distal symmetric polyneuropathy, also known as diabetic neuropathy, is the most common neurological complication of diabetes and a main cause of morbidity. The condition leads to gradual loss of function of the longest nerve fibers that limits function and decreases quality of life. Symptoms present distally and symmetrically in toes and feet. Symptoms of the neurologic disability include sensory loss, risk of foot ulcers and limb amputations and pain. The condition is not generally considered reversible, and condition management aims to slow progression and prevent complications. According to estimates from the International Diabetes Federation, diabetic neuropathy affected approximately 425 million people in 2017, with projections indicating a rise to 628 million by 2045. Despite the high prevalence of this condition, it is commonly misdiagnosed and has limited treatment options. There are multiple phenotypes of diabetic neuropathy, with the most common form being distal symmetric sensorimotor polyneuropathy, which is what we will be focusing on in this study. The proposed study seeks to evaluate the effectiveness of a non-compressive therapeutic socks throughout a 12-week course of rehabilitation for managing distal symmetric polyneuropathy. Outcome measures will be collected at standard intervals and compared with pre-treatment measures to evaluate effectiveness of treatment.
Because autonomic neuropathy affects the constriction of thermoregulatory blood vessels, it is more difficult for diabetic patients to maintain their own body temperature in cold environments than normal people, and therefore it is more difficult for diabetic patients to maintain a relatively constant body temperature regardless of the temperature of the environment than normal people. So are diabetic patients under general anesthesia more susceptible to intraoperative hypothermia? How does heart rate variability change in diabetic patients under general anesthesia? If diabetic patients are more susceptible to intraoperative hypothermia under general anesthesia, is this related to their cardiac autonomic dysfunction?
This is the feasibility study of a single-site parallel three-armed participant-blinded controlled randomised efficacy trial of a 5-week course of the 'NeuOst treatment', compared to a designated control intervention, and to usual care only, for adults with pDPN.
To compare the effects of propioceptive neuromascular facilitation and neural flossing on balance and gait in diabetic peripheral neuropathy.
This study is designed to evaluate the efficacy and safety of pregabalin extended-release tablets in the treatment of neuropathic pain associated with diabetic peripheral neuropathy. Pregabalin has been approved in more than 130 countries for neuropathic pain associated with diabetic peripheral neuropathy, postherpetic neuralgia, and neuralgia associated with spinal cord injury. Pregabalin extended-release tablets were administered once daily, as a single dose after dinner. Compared with pregabalin capsule formulation, it reduces the frequency of medication and improves patient compliance.
Patients with type 2 diabetes have an increased risk of developing vascular complications. Microvascular dysfunction might be caused by the increased production of methylglyoxal under hyperglycaemic conditions. Methylglyoxal is a by-product of glycolysis and forms advanced glycation endproducts (AGEs) on proteins and DNA, thereby disrupting their function. Preventing methylglyoxal accumulation and AGEs formation may offer a therapeutic option for treating microvascular complications in diabetics. Pyridoxamine is a vitamin B6 vitamer that scavenges methylglyoxal and thereby inhibits the formation of AGEs. In this study, the researchers investigate whether pyridoxamine supplementation in type 2 diabetes improves microvascular function in the eye, kidney and skin, and reduces markers of endothelial dysfunction and glycation.
This is an initial dose escalation safety and exploratory efficacy study to treat two groups of subjects with critically sized diabetic wounds and diabetic neuropathy using placental-derived stem cells (PDSC) transplanted by injection into soft tissues of the lower limb. Its primary objective is safety assessment and its secondary objective is determining optimum PDSC safe dose. Group 1 will receive implantation of cells in the ulcer, in the ulcer bed, and along the distal arterial vessels that supply blood to the foot. Group 2 will follow the same protocol for the foot but will have an additional dose of cells implanted in the anterior and posterior compartments of the same leg to determine the impact on peripheral neuropathy. Dose escalation and safety will be documented. Exploratory measures of efficacy include: ulcer healing, hemodynamic and anatomical effects on the arteries of the foot, and changes in the sensory perceptions of the foot.