Clinical Trials Logo

Diabetic Cardiomyopathies clinical trials

View clinical trials related to Diabetic Cardiomyopathies.

Filter by:
  • Not yet recruiting  
  • Page 1

NCT ID: NCT05571865 Not yet recruiting - Heart Failure Clinical Trials

Diabetic Cardiomyopathy and Heart Failure

Start date: July 2023
Phase: N/A
Study type: Interventional

This study will demonstrate the beneficial effects of ketone bodies in type 1 diabetes (T1D) patients and will have significant translational applications to prevent serious metabolic conditions such as T1D induced diabetic cardiomyopathy (DCM).

NCT ID: NCT04534894 Not yet recruiting - Clinical trials for Diabetic Cardiomyopathies

Single-center Clinical Study of Early Diagnosis of Diabetic Cardiomyopathy With FLIM

Start date: October 1, 2020
Phase:
Study type: Observational

Diabetic Cardiomyopathy (DCM) is disease of myocardial structure and function which is independent of hypertension, coronary heart disease, heart valve abnormalities, and other types of heart disease. DCM affects approximately 12% of diabetics and also appeared in some patients with well-controlled blood glucose. There is no specific and effective diagnostic method of DCM currently. Since it is well known that the dysfunction of myocardial metabolism caused by hyperglycemia and insulin resistance induces DCM, the method of evaluation of the metabolism will assist the diagnosis of DCM. Nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) is one of important coenzymes involved in biological metabolism. Fluorescence lifetime microscopy (FLIM) can detect the metabolic status based on the fluorescence characteristics of NAD(P)H. Previous studies have reported that NAD(P)H fluorescence lifetime can be used to assess the metabolic status of living cardiomyocytes cultured in vitro, and metabolism changes related to myocardial infarction and heart failure in rats. the investigators detected the metabolic status by label-free FLIM on the myocardial tissues and blood plasma in a rat model of type 2 diabetic cardiomyopathy, and found FLIM could provide valuable information about the myocardial metabolism by detecting the NAD(P)H fluorescence lifetime of blood plasma. Recently, The investigators have explored the method of the FLIM in clinical study. The investigators used FLIM to compare the NAD(P)H fluorescence lifetime of blood plasma in healthy participants, type 2 diabetic patients with normal diastolic function and with diastolic dysfunction. The results showed that the NAD(P)H fluorescence life parameter of a2 was lower in type 2 diabetic patients with diastolic dysfunction (30.5±2.7%) than in healthy participants (41.5±4.8%) and type 2 diabetic patients with normal diastolic function (37.8±3.7%). Therefore, The investigators propose FLIM can provide valuable information about the myocardial metabolism, and it can be used as a non-invasive, label-free, and rapid screening method of diagnosis of DCM. In this study, the investigators will recruit 243 patients with type 2 diabetes and divide them into two groups: normal diastolic function group (DM Group) and diastolic dysfunction group (DCM Group), based on the symptoms, laboratory examination and echocardiographic results. Then FLIM will be applied to detect the NAD(P)H fluorescence characteristics of venous blood of all patients. After that, the correlation between the parameters of diastolic function (E peak, E/E' ratio, left atrial volume, NT-proBNP) and the parameters of metabolism status (NAD(P)H fluorescence life parameter of a2 and the ratio of bound state/free state NAD(P)H) will be analyzed. This study will verify FLIM is helpful to diagnose DCM.