Dexmedetomidine Clinical Trial
Official title:
Low-dose S-ketamine and Dexmedetomidine in Combination With Opioids for Patient-controlled Analgesia After Scoliosis Correction Surgery: a Randomized, Double-blind, Placebo-controlled Trial
Verified date | December 2022 |
Source | Peking University First Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Scoliosis correction surgery is followed with severe pain. Patients after scoliosis correction surgery usually require high dose opioids and long duration analgesia, which may increase side effects and even drug tolerance. S-ketamine is the pure dextrorotatory enantiomer of ketamine with stronger analgesic effect and less side effects, but mental side effects is a major concern. Dexmedetomidine can be used as an analgesic supplement; it also improves sleep quality in postoperative patients. We hypothesize that low-dose ketamine and dexmedetomidine in combination with opioids may have synergistic effect in analgesia and reduce drug-related side effects. This study aims to explore the effect of low-dose of S-ketamine and dexmedetomidine in combination with opioids for postoperative patient-controlled intravenous analgesia in patients following scoliosis correction surgery.
Status | Completed |
Enrollment | 200 |
Est. completion date | October 7, 2022 |
Est. primary completion date | September 7, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Age = 18 years old, body weight = 40 kg; - Scheduled to undergo scoliosis correction with pedicle screw fixation; - Planned to use patient-controlled intravenous analgesia after surgery. Exclusion Criteria: - Refused to participate in the study; - Preoperative sick sinus syndrome, severe sinus bradycardia (heart rate < 50 beats/min), atrioventricular block grade II or above without pacemaker; or comorbid with congenital heart disease, arrhythmia, or other serious cardiovascular diseases with a cardiac function grade = III; - Patients with obstructive sleep apnea syndrome, or a STOP-Bang score = 3 in combination with a serum HCO3- level = 28 mmol/L; - History of hyperthyroidism and pheochromocytoma; - History of schizophrenia, epilepsy, myasthenia gravis, or delirium; - Severe liver dysfunction (child Pugh grade C), severe renal dysfunction (preoperative dialysis), or American Society of Anesthesiologists grade = IV; - Barrier in communication; - Other conditions that are considered unsuitable for study participation. |
Country | Name | City | State |
---|---|---|---|
China | Peking University First Hospital | Beijing | Beijing |
Lead Sponsor | Collaborator |
---|---|
Peking University First Hospital |
China,
Bartova L, Papageorgiou K, Milenkovic I, Dold M, Weidenauer A, Willeit M, Winkler D, Kasper S. Rapid antidepressant effect of S-ketamine in schizophrenia. Eur Neuropsychopharmacol. 2018 Aug;28(8):980-982. doi: 10.1016/j.euroneuro.2018.05.007. Epub 2018 Jul 2. — View Citation
Bornemann-Cimenti H, Wejbora M, Michaeli K, Edler A, Sandner-Kiesling A. The effects of minimal-dose versus low-dose S-ketamine on opioid consumption, hyperalgesia, and postoperative delirium: a triple-blinded, randomized, active- and placebo-controlled clinical trial. Minerva Anestesiol. 2016 Oct;82(10):1069-1076. Epub 2016 Jun 21. — View Citation
Brinck EC, Tiippana E, Heesen M, Bell RF, Straube S, Moore RA, Kontinen V. Perioperative intravenous ketamine for acute postoperative pain in adults. Cochrane Database Syst Rev. 2018 Dec 20;12(12):CD012033. doi: 10.1002/14651858.CD012033.pub4. — View Citation
Canuso CM, Singh JB, Fedgchin M, Alphs L, Lane R, Lim P, Pinter C, Hough D, Sanacora G, Manji H, Drevets WC. Efficacy and Safety of Intranasal Esketamine for the Rapid Reduction of Symptoms of Depression and Suicidality in Patients at Imminent Risk for Suicide: Results of a Double-Blind, Randomized, Placebo-Controlled Study. Focus (Am Psychiatr Publ). 2019 Jan;17(1):55-65. doi: 10.1176/appi.focus.17105. Epub 2019 Jan 7. — View Citation
Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, de Santibanes E, Pekolj J, Slankamenac K, Bassi C, Graf R, Vonlanthen R, Padbury R, Cameron JL, Makuuchi M. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg. 2009 Aug;250(2):187-96. doi: 10.1097/SLA.0b013e3181b13ca2. — View Citation
Gao Y, Deng X, Yuan H, Leng Y, Zhang T, Xu X, Tian S, Fang J, Ouyang W, Wu X. Patient-controlled Intravenous Analgesia With Combination of Dexmedetomidine and Sufentanil on Patients After Abdominal Operation: A Prospective, Randomized, Controlled, Blinded, Multicenter Clinical Study. Clin J Pain. 2018 Feb;34(2):155-161. doi: 10.1097/AJP.0000000000000527. — View Citation
Gerbershagen HJ, Aduckathil S, van Wijck AJ, Peelen LM, Kalkman CJ, Meissner W. Pain intensity on the first day after surgery: a prospective cohort study comparing 179 surgical procedures. Anesthesiology. 2013 Apr;118(4):934-44. doi: 10.1097/ALN.0b013e31828866b3. — View Citation
Hu ZC, Xu G, Zhang XW, Ma K, Jin JJ, Li PS. [Meta-analysis of the effects of dexmedetomidine combined with ketamine during dressing changes in burn patients]. Zhonghua Shao Shang Za Zhi. 2020 Jun 20;36(6):458-464. doi: 10.3760/cma.j.cn501120-20190327-00145. Chinese. — View Citation
Hussain A, Erdek M. Interventional pain management for failed back surgery syndrome. Pain Pract. 2014 Jan;14(1):64-78. doi: 10.1111/papr.12035. Epub 2013 Feb 3. — View Citation
Lee KH, Lee SJ, Park JH, Kim SH, Lee H, Oh DS, Kim YH, Park YH, Kim H, Lee SE. Analgesia for spinal anesthesia positioning in elderly patients with proximal femoral fractures: Dexmedetomidine-ketamine versus dexmedetomidine-fentanyl. Medicine (Baltimore). 2020 May;99(20):e20001. doi: 10.1097/MD.0000000000020001. — View Citation
Meng ZT, Cui F, Li XY, Wang DX. Epidural morphine improves postoperative analgesia in patients after total knee arthroplasty: A randomized controlled trial. PLoS One. 2019 Jul 1;14(7):e0219116. doi: 10.1371/journal.pone.0219116. eCollection 2019. — View Citation
Molero P, Ramos-Quiroga JA, Martin-Santos R, Calvo-Sanchez E, Gutierrez-Rojas L, Meana JJ. Antidepressant Efficacy and Tolerability of Ketamine and Esketamine: A Critical Review. CNS Drugs. 2018 May;32(5):411-420. doi: 10.1007/s40263-018-0519-3. — View Citation
Nielsen RV. Adjuvant analgesics for spine surgery. Dan Med J. 2018 Mar;65(3):B5468. — View Citation
Peng K, Zhang J, Meng XW, Liu HY, Ji FH. Optimization of Postoperative Intravenous Patient-Controlled Analgesia with Opioid-Dexmedetomidine Combinations: An Updated Meta-Analysis with Trial Sequential Analysis of Randomized Controlled Trials. Pain Physician. 2017 Nov;20(7):569-596. — View Citation
Persson J, Hasselstrom J, Maurset A, Oye I, Svensson JO, Almqvist O, Scheinin H, Gustafsson LL, Almqvist O. Pharmacokinetics and non-analgesic effects of S- and R-ketamines in healthy volunteers with normal and reduced metabolic capacity. Eur J Clin Pharmacol. 2002 Feb;57(12):869-75. doi: 10.1007/s002280100353. — View Citation
Segmiller F, Ruther T, Linhardt A, Padberg F, Berger M, Pogarell O, Moller HJ, Kohler C, Schule C. Repeated S-ketamine infusions in therapy resistant depression: a case series. J Clin Pharmacol. 2013 Sep;53(9):996-8. doi: 10.1002/jcph.122. Epub 2013 Jul 24. No abstract available. — View Citation
Seki H, Ideno S, Ishihara T, Watanabe K, Matsumoto M, Morisaki H. Postoperative pain management in patients undergoing posterior spinal fusion for adolescent idiopathic scoliosis: a narrative review. Scoliosis Spinal Disord. 2018 Sep 12;13:17. doi: 10.1186/s13013-018-0165-z. eCollection 2018. — View Citation
Stone LS, MacMillan LB, Kitto KF, Limbird LE, Wilcox GL. The alpha2a adrenergic receptor subtype mediates spinal analgesia evoked by alpha2 agonists and is necessary for spinal adrenergic-opioid synergy. J Neurosci. 1997 Sep 15;17(18):7157-65. doi: 10.1523/JNEUROSCI.17-18-07157.1997. — View Citation
Wu XH, Cui F, Zhang C, Meng ZT, Wang DX, Ma J, Wang GF, Zhu SN, Ma D. Low-dose Dexmedetomidine Improves Sleep Quality Pattern in Elderly Patients after Noncardiac Surgery in the Intensive Care Unit: A Pilot Randomized Controlled Trial. Anesthesiology. 2016 Nov;125(5):979-991. doi: 10.1097/ALN.0000000000001325. — View Citation
* Note: There are 19 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Percent of patients with moderate to severe pain within 72 hours | Pain severity is evaluated with the Numeric Rating Scale (NRS, an 11-point scale where 0 = no pain and 10 = the worst pain) twice daily (8:00-10:00 and 18:00-20:00) at rest and with movement. Moderate to severe pain is defined as any NRS pain score of 4 or higher. | Up to 72 hours after surgery | |
Secondary | NRS pain score (at rest and with movement) at various timepoints after surgery | Pain severity is evaluated with the Numeric Rating Scale (NRS, an 11-point scale where 0 = no pain and 10 = the worst pain) twice daily (8:00-10:00 and 18:00-20:00) at rest and with movement. Moderate to severe pain is defined as any NRS pain score of 4 or higher. | Up to 72 hours after surgery | |
Secondary | Cumulative opioid consumption | Cumulative opioid consumption | Up to 72 hours after surgery | |
Secondary | Cumulative analgesic consumption | Cumulative analgesic consumption | Up to 72 hours after surgery | |
Secondary | Agitation and sedation score at various timepoints after surgery | Agitation and sedation score is evaluated with the Richmond Agitation and Sedation Scale (RASS, with scores ranging from -5 [unarousable] to +4 [combative] and 0 indicates alert and calm) twice daily (8:00-10:00 and 18:00-20:00). | Up to the 5th day after surgery | |
Secondary | Incidence of postoperative delirium within the first 5 days | Delirium is assessed with the Three-dimensional Confusion Assessment Method (3D CAM) twice daily (8:00-10:00 and 18:00-20:00). | Up to the 5th day after surgery | |
Secondary | Subjective sleep quality during the first 5 postoperative days | Subjective sleep quality is evaluated with the Numeric Rating Scale (NRS, an 11-point scale where 0 = the best sleep and 10 = no sleep at all) once daily (8:00-10:00) | Up to the 5th day after surgery | |
Secondary | Length of stay in hospital after surgery | Length of stay in hospital after surgery | Up to 30 days after surgery | |
Secondary | Duration requiring analgesics within 30 days after surgery | Duration requiring analgesics within 30 days after surgery | Up to 30 days after surgery | |
Secondary | Incidence of postoperative complications within 30 days | Postoperative complications are defined as new-onset medical conditions that were deemed harmful and required therapeutic intervention (i.e., grade II or higher on the Clavien-Dindo classification) | Up to 30 days after surgery |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04577430 -
Effects of Dexmedetomidine on Cardiac Electrophysiology in Patients Under General Anesthesia During Perioperative Period
|
N/A | |
Completed |
NCT03220880 -
Intranasal Dexmedetomidine Sedation in Children for Non-painful Procedures
|
||
Completed |
NCT05291364 -
Dexmedetomidine in Splanchnic Nerve Neurolysis
|
N/A | |
Recruiting |
NCT05249153 -
Dexmedetomidine and Sufentanil Effect in PCA on Pediatric Patients Undergoing Scoliosis Surgery
|
N/A | |
Completed |
NCT01688648 -
Comparison Between Lidocaine, Dexmedetomidine, and Their Combined Infusion in Subjects Undergoing Coronary Artery Bypass Graft
|
N/A | |
Completed |
NCT05103735 -
Propofol-remifentanyl Versus Dexmedetomidine in Awake Craniotomy: Impact on Electroclinical Seizure Activity
|
||
Recruiting |
NCT06030804 -
Perioperative Dexmedetomidine and Long-term Survival After Cancer Surgery
|
N/A | |
Terminated |
NCT03253224 -
Magnesium and Postoperative Pain
|
Phase 4 | |
Recruiting |
NCT06210061 -
Propofol-Fentanyl-Dexmedetomidine and Propofol-Fentanyl-Sevoflurane Anesthesia for Major Spine Surgery Under Somato Sensory- and Motor- Evoked Potential Monitoring
|
N/A | |
Recruiting |
NCT05525819 -
Intrathecal Versus Intravenous Dexmedetomidine in Prostate Transurethral Resection
|
N/A | |
Completed |
NCT04665453 -
Dexmedetomidine and Melatonin for Sleep Induction for EEG in Children
|
N/A | |
Completed |
NCT06018948 -
Effect of Two Different Doses of Dexmedetomidine Infusion in Morbidly Obese Patients
|
Phase 4 | |
Completed |
NCT03775655 -
Low Dose Hyperbaric Bupivacaine and Dexmedetomidine as an Adjuvant, Caesarean Section
|
Phase 2/Phase 3 | |
Completed |
NCT03658421 -
Dexmedetomidine as Adjuvant for FNB in TKA
|
N/A | |
Completed |
NCT03234660 -
Dexmedetomidine and Neuroprotection in Children Undergoing General Anesthesia
|
N/A | |
Completed |
NCT06020781 -
Efficacy and Safety of Dexmedetomidine to Bupivacaine in Supraclavicular Brachial Plexus Block
|
N/A | |
Recruiting |
NCT06207331 -
Effects of Atomized Dexmedetomidine on Lung Function in Patients With Chronic Obstructive Pulmonary Disease
|
N/A | |
Active, not recruiting |
NCT03629262 -
Dexmedetomidine Supplemented Intravenous Analgesia in Elderly After Orthopedic Surgery
|
Phase 4 | |
Completed |
NCT06098209 -
Dexmedetomidine and Propofol in Mechanically Ventilated Patients by Using Salivary Alpha-amylase as a Stress Marker
|
N/A | |
Not yet recruiting |
NCT06062550 -
Different Dose Esketamine and Dexmedetomidine Combination for Supplemental Analgesia After Scoliosis Correction Surgery
|
Phase 4 |