Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT06322446
Other study ID # PI23/00299
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date February 27, 2024
Est. completion date December 23, 2025

Study information

Verified date March 2024
Source Universidad Politecnica de Madrid
Contact Margarita Pérez Ruiz, PhD
Phone +34910677960
Email margarita.perez@upm.es
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Recently, the treatment of Cystic Fibrosis (CF) incorporated new modulators/enhancers of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). It is thus increasingly important to study the side effects of these drugs, their extrapulmonary effects and possible interaction with other drugs and with exercise. For this purpose, a randomized controlled trial is proposed to determine the effects of a telematic exercise intervention on muscle health, in a group of 48 children and adolescents with CF treated with these new generation CFTR modulators. They will be randomly assigned to two groups (exercise and control group). The effect of the intervention will be analysed measuring the variables of muscle health, cardiorespiratory fitness, lung function, body composition, inflammatory biomarkers and miRNAs. After completion of the intervention program, adherence to exercise and clinical evolution after one year will be analysed.


Description:

Specific objectives 1. To determine the effects of a strength exercise intervention in a group of children and adolescents with cystic fibrosis treated with new generation CFTR modulators on: (1.i) peripheral muscle strength; (1.ii) respiratory muscle strength; (1.iii) muscle mass and (1.iv) biomarkers of muscle damage. 2. To determine the effects of a strength exercise intervention in a group of children and adolescents with cystic fibrosis being treated with new generation CFTR modulators on: (2.i) cardiorespiratory fitness; (2.ii) body composition and (2.iii) lung function. 3. To determine the effects of a strength-based exercise intervention in a group of children and adolescents with cystic fibrosis treated with new-generation CFTR modulators on: (3.i) biomarkers of inflammatory status and (3.ii) expression of associated miRNAs. 4. To determine the effects of a strength-based exercise intervention in a group of children and adolescents with cystic fibrosis treated with the new generation CFTR modulators on the levels of Elexaxcaftor/Ivacaftor/Tezacaftor and their metabolites. 5. To assess the clinical evolution and adherence to exercise after 6 months of the programme in children and adolescents with cystic fibrosis treated with the new generation of CFTR modulators.


Recruitment information / eligibility

Status Recruiting
Enrollment 48
Est. completion date December 23, 2025
Est. primary completion date December 23, 2025
Accepts healthy volunteers No
Gender All
Age group 6 Years to 20 Years
Eligibility Inclusion Criteria: - patients diagnosed with CF. - patients between 6-20 years of age. - patients receiving treatment with new CFTR protein modulating medication - reading, acceptance and signing of the informed consent form. Exclusion Criteria: - CF patients with symptoms of pulmonary exacerbation during the last four weeks. - with a diagnosis of other cardiorespiratory lung diseases progressing to a symptom of persistent respiratory dysfunction. - CF patients with musculoskeletal alterations that influence assessments. - CF patient who is pregnant during the time of the study - CF patient with cognitive impairment; - CF patient with incomplete dosing of modulator therapy;

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Exercise
16-week exercise intervention: At the beginning of the intervention, we will conduct a face-to-face familiarisation session with the exercises of the training programme. The intervention will consist of 2 sessions/week for 16 weeks. Each session consists of three stages: (i) Warm-up: 10 min of joint mobility and low intensity exercises involving the musculature to be worked in that session; (ii) Main part: circuit training mainly composed of strength exercises targeting the different muscle groups of the body and playing activities (iii) Cool down: 10 min with guided breathing work and stretching of the main muscle groups worked

Locations

Country Name City State
Spain Facultad de Ciencias de la Actividad Física y Deporte - INEF UPM Madrid

Sponsors (6)

Lead Sponsor Collaborator
Universidad Politecnica de Madrid Carlos III Health Institute, Hospital Infantil Universitario Niño Jesús, Madrid, Spain, Hospital Universitario La Paz, Hospital Universitario Ramon y Cajal, Universidad Europea de Madrid

Country where clinical trial is conducted

Spain, 

References & Publications (54)

Angelis A, Kanavos P, Lopez-Bastida J, Linertova R, Nicod E, Serrano-Aguilar P; BURQOL-RD Research Network. Social and economic costs and health-related quality of life in non-institutionalised patients with cystic fibrosis in the United Kingdom. BMC Health Serv Res. 2015 Sep 28;15:428. doi: 10.1186/s12913-015-1061-3. — View Citation

Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC, Burgel PR, Tullis E, Castanos C, Castellani C, Byrnes CA, Cathcart F, Chotirmall SH, Cosgriff R, Eichler I, Fajac I, Goss CH, Drevinek P, Farrell PM, Gravelle AM, Havermans T, Mayer-Hamblett N, Kashirskaya N, Kerem E, Mathew JL, McKone EF, Naehrlich L, Nasr SZ, Oates GR, O'Neill C, Pypops U, Raraigh KS, Rowe SM, Southern KW, Sivam S, Stephenson AL, Zampoli M, Ratjen F. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2020 Jan;8(1):65-124. doi: 10.1016/S2213-2600(19)30337-6. Epub 2019 Sep 27. Erratum In: Lancet Respir Med. 2019 Dec;7(12):e40. — View Citation

Bene Z, Fejes Z, Macek M Jr, Amaral MD, Balogh I, Nagy B Jr. Laboratory biomarkers for lung disease severity and progression in cystic fibrosis. Clin Chim Acta. 2020 Sep;508:277-286. doi: 10.1016/j.cca.2020.05.015. Epub 2020 May 16. — View Citation

Bene Z, Fejes Z, Szanto TG, Fenyvesi F, Varadi J, Clarke LA, Panyi G, Macek M Jr, Amaral MD, Balogh I, Nagy B Jr. Enhanced Expression of Human Epididymis Protein 4 (HE4) Reflecting Pro-Inflammatory Status Is Regulated by CFTR in Cystic Fibrosis Bronchial Epithelial Cells. Front Pharmacol. 2021 May 14;12:592184. doi: 10.3389/fphar.2021.592184. eCollection 2021. — View Citation

Bergeron C, Cantin AM. Cystic Fibrosis: Pathophysiology of Lung Disease. Semin Respir Crit Care Med. 2019 Dec;40(6):715-726. doi: 10.1055/s-0039-1694021. Epub 2019 Oct 28. — View Citation

Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81. — View Citation

Burgener EB, Moss RB. Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis. Curr Opin Pediatr. 2018 Jun;30(3):372-377. doi: 10.1097/MOP.0000000000000627. — View Citation

Burtin C, Hebestreit H. Rehabilitation in patients with chronic respiratory disease other than chronic obstructive pulmonary disease: exercise and physical activity interventions in cystic fibrosis and non-cystic fibrosis bronchiectasis. Respiration. 2015;89(3):181-9. doi: 10.1159/000375170. Epub 2015 Feb 12. — View Citation

Calella P, Valerio G, Brodlie M, Donini LM, Siervo M. Cystic fibrosis, body composition, and health outcomes: a systematic review. Nutrition. 2018 Nov;55-56:131-139. doi: 10.1016/j.nut.2018.03.052. Epub 2018 Apr 6. — View Citation

Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros. 2015 Jul;14(4):419-30. doi: 10.1016/j.jcf.2015.03.003. Epub 2015 Mar 23. — View Citation

Catellani C, Cirillo F, Graziano S, Montanini L, Marmiroli N, Gulli M, Street ME. MicroRNA global profiling in cystic fibrosis cell lines reveals dysregulated pathways related with inflammation, cancer, growth, glucose and lipid metabolism, and fertility: an exploratory study. Acta Biomed. 2022 Jul 1;93(3):e2022133. doi: 10.23750/abm.v93i3.12842. — View Citation

Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NW, Bijvelds MJ, Scholte BJ, Nieuwenhuis EE, van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013 Jul;19(7):939-45. doi: 10.1038/nm.3201. Epub 2013 Jun 2. — View Citation

Divangahi M, Balghi H, Danialou G, Comtois AS, Demoule A, Ernest S, Haston C, Robert R, Hanrahan JW, Radzioch D, Petrof BJ. Lack of CFTR in skeletal muscle predisposes to muscle wasting and diaphragm muscle pump failure in cystic fibrosis mice. PLoS Genet — View Citation

Donadio MVF, Cobo-Vicente F, San Juan AF, Sanz-Santiago V, Fernandez-Luna A, Iturriaga T, Villa Asensi JR, Perez-Ruiz M. Is exercise and electrostimulation effective in improving muscle strength and cardiorespiratory fitness in children with cystic fibrosis and mild-to-moderate pulmonary impairment?: Randomized controlled trial. Respir Med. 2022 May;196:106798. doi: 10.1016/j.rmed.2022.106798. Epub 2022 Mar 1. — View Citation

Dwyer TJ, Alison JA, McKeough ZJ, Daviskas E, Bye PTP. Effects of exercise on respiratory flow and sputum properties in patients with cystic fibrosis. Chest. 2011 Apr;139(4):870-877. doi: 10.1378/chest.10-1158. Epub 2010 Sep 9. — View Citation

Elborn JS. Adult Care in Cystic Fibrosis. Semin Respir Crit Care Med. 2019 Dec;40(6):857-868. doi: 10.1055/s-0039-3400289. Epub 2019 Dec 30. — View Citation

Elborn JS. Cystic fibrosis. Lancet. 2016 Nov 19;388(10059):2519-2531. doi: 10.1016/S0140-6736(16)00576-6. Epub 2016 Apr 29. — View Citation

Fiz JA, Montserrat JM, Picado C, Plaza V, Agusti-Vidal A. How many manoeuvres should be done to measure maximal inspiratory mouth pressure in patients with chronic airflow obstruction? Thorax. 1989 May;44(5):419-21. doi: 10.1136/thx.44.5.419. — View Citation

Fontes G, Ghislain J, Benterki I, Zarrouki B, Trudel D, Berthiaume Y, Poitout V. The DeltaF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Is Associated With Progressive Insulin Resistance and Decreased Functional beta-Cell Mass in Mice. Diabetes. 2015 Dec;64(12):4112-22. doi: 10.2337/db14-0810. Epub 2015 Aug 17. — View Citation

From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO); Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, Shazam Hussain M, Jansen O, Jayaraman MV, Khalessi AA, Kluck BW, Lavine S, Meyers PM, Ramee S, Rufenacht DA, Schirmer CM, Vorwerk D. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke. 2018 Aug;13(6):612-632. doi: 10.1177/1747493018778713. Epub 2018 May 22. No abstract available. — View Citation

Galluzzi L, Kroemer G. Etiological involvement of CFTR in apparently unrelated human diseases. Mol Cell Oncol. 2018 Dec 27;6(1):1558874. doi: 10.1080/23723556.2018.1558874. eCollection 2019. No abstract available. — View Citation

Gao M, Huang Y, Wang Q, Liu K, Sun G. Effects of High-Intensity Interval Training on Pulmonary Function and Exercise Capacity in Individuals with Chronic Obstructive Pulmonary Disease: A Meta-Analysis and Systematic Review. Adv Ther. 2022 Jan;39(1):94-116. doi: 10.1007/s12325-021-01920-6. Epub 2021 Nov 18. Erratum In: Adv Ther. 2022 Jul;39(7):3424. — View Citation

Gramegna A, Contarini M, Aliberti S, Casciaro R, Blasi F, Castellani C. From Ivacaftor to Triple Combination: A Systematic Review of Efficacy and Safety of CFTR Modulators in People with Cystic Fibrosis. Int J Mol Sci. 2020 Aug 16;21(16):5882. doi: 10.3390/ijms21165882. — View Citation

Gruber W, Orenstein DM, Braumann KM, Beneke R. Interval exercise training in cystic fibrosis -- effects on exercise capacity in severely affected adults. J Cyst Fibros. 2014 Jan;13(1):86-91. doi: 10.1016/j.jcf.2013.06.005. Epub 2013 Jul 15. — View Citation

Hebestreit H, Kieser S, Junge S, Ballmann M, Hebestreit A, Schindler C, Schenk T, Posselt HG, Kriemler S. Long-term effects of a partially supervised conditioning programme in cystic fibrosis. Eur Respir J. 2010 Mar;35(3):578-83. doi: 10.1183/09031936.00062409. Epub 2009 Jul 30. — View Citation

Ideozu JE, Zhang X, Rangaraj V, McColley S, Levy H. Microarray profiling identifies extracellular circulating miRNAs dysregulated in cystic fibrosis. Sci Rep. 2019 Oct 29;9(1):15483. doi: 10.1038/s41598-019-51890-7. — View Citation

Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015 Jul;16(7):421-33. doi: 10.1038/nrg3965. Epub 2015 Jun 16. — View Citation

Kamal N, Surana P, Koh C. Liver disease in patients with cystic fibrosis. Curr Opin Gastroenterol. 2018 May;34(3):146-151. doi: 10.1097/MOG.0000000000000432. — View Citation

Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073-80. doi: 10.1126/science.2570460. — View Citation

Khalaf M, Scott-Ward T, Causer A, Saynor Z, Shepherd A, Gorecki D, Lewis A, Laight D, Shute J. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Human Lung Microvascular Endothelial Cells Controls Oxidative Stress, Reactive Oxygen-Mediated Cell Signaling and Inflammatory Responses. Front Physiol. 2020 Jul 29;11:879. doi: 10.3389/fphys.2020.00879. eCollection 2020. — View Citation

King JA, Nichols AL, Bentley S, Carr SB, Davies JC. An Update on CFTR Modulators as New Therapies for Cystic Fibrosis. Paediatr Drugs. 2022 Jul;24(4):321-333. doi: 10.1007/s40272-022-00509-y. Epub 2022 May 16. — View Citation

Murillo AMM, Tome-Amat J, Ramirez Y, Garrido-Arandia M, Valle LG, Hernandez-Ramirez G, Tramarin L, Herreros P, Santamaria B, Diaz-Perales A, Holgado M. Developing an Optical Interferometric Detection Method based biosensor for detecting specific SARS-CoV-2 immunoglobulins in Serum and Saliva, and their corresponding ELISA correlation. Sens Actuators B Chem. 2021 Oct 15;345:130394. doi: 10.1016/j.snb.2021.130394. Epub 2021 Jul 3. — View Citation

Nichols DP, Donaldson SH, Frederick CA, Freedman SD, Gelfond D, Hoffman LR, Kelly A, Narkewicz MR, Pittman JE, Ratjen F, Sagel SD, Rosenfeld M, Schwarzenberg SJ, Singh PK, Solomon GM, Stalvey MS, Kirby S, VanDalfsen JM, Clancy JP, Rowe SM. PROMISE: Working with the CF community to understand emerging clinical and research needs for those treated with highly effective CFTR modulator therapy. J Cyst Fibros. 2021 Mar;20(2):205-212. doi: 10.1016/j.jcf.2021.02.003. Epub 2021 Feb 19. — View Citation

Nixon PA, Orenstein DM, Kelsey SF, Doershuk CF. The prognostic value of exercise testing in patients with cystic fibrosis. N Engl J Med. 1992 Dec 17;327(25):1785-8. doi: 10.1056/NEJM199212173272504. — View Citation

Plebani R, Potla R, Soong M, Bai H, Izadifar Z, Jiang A, Travis RN, Belgur C, Dinis A, Cartwright MJ, Prantil-Baun R, Jolly P, Gilpin SE, Romano M, Ingber DE. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros. 2022 Jul;21(4):606-615. doi: 10.1016/j.jcf.2021.10.004. Epub 2021 Nov 17. — View Citation

Plebani R, Tripaldi R, Lanuti P, Recchiuti A, Patruno S, Di Silvestre S, Simeone P, Anile M, Venuta F, Prioletta M, Mucilli F, Del Porto P, Marchisio M, Pandolfi A, Romano M. Establishment and long-term culture of human cystic fibrosis endothelial cells. Lab Invest. 2017 Nov;97(11):1375-1384. doi: 10.1038/labinvest.2017.74. Epub 2017 Jul 31. — View Citation

Prevotat A, Godin J, Bernard H, Perez T, Le Rouzic O, Wallaert B. Improvement in body composition following a supervised exercise-training program of adult patients with cystic fibrosis. Respir Med Res. 2019 May;75:5-9. doi: 10.1016/j.resmer.2019.04.001. Epub 2019 Apr 13. — View Citation

Quinton PM. Cystic fibrosis: lessons from the sweat gland. Physiology (Bethesda). 2007 Jun;22:212-25. doi: 10.1152/physiol.00041.2006. — View Citation

Ratchford TL, Teckman JH, Patel DR. Gastrointestinal pathophysiology and nutrition in cystic fibrosis. Expert Rev Gastroenterol Hepatol. 2018 Sep;12(9):853-862. doi: 10.1080/17474124.2018.1502663. Epub 2018 Aug 3. — View Citation

Reznikov LR. Cystic Fibrosis and the Nervous System. Chest. 2017 May;151(5):1147-1155. doi: 10.1016/j.chest.2016.11.009. Epub 2016 Nov 19. — View Citation

Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066-73. doi: 10.1126/science.2475911. Erratum In: Science 1989 Sep 29;245(4925):1437. — View Citation

Rodriguez-Miguelez P, Seigler N, Ishii H, Crandall R, McKie KT, Forseen C, Harris RA. Exercise Intolerance in Cystic Fibrosis: Importance of Skeletal Muscle. Med Sci Sports Exerc. 2021 Apr 1;53(4):684-693. doi: 10.1249/MSS.0000000000002521. — View Citation

Rommens JM, Zengerling-Lentes S, Kerem B, Melmer G, Buchwald M, Tsui LC. Physical localization of two DNA markers closely linked to the cystic fibrosis locus by pulsed-field gel electrophoresis. Am J Hum Genet. 1989 Dec;45(6):932-41. — View Citation

Saynor ZL, Gruet M, Rodriguez-Miguelez P, Harris RA. Oxygen transport and utilisation during exercise in cystic fibrosis: contributors to exercise intolerance. Exp Physiol. 2020 Dec;105(12):1979-1983. doi: 10.1113/EP088106. Epub 2020 Nov 11. — View Citation

Shteinberg M, Taylor-Cousar JL, Durieu I, Cohen-Cymberknoh M. Fertility and Pregnancy in Cystic Fibrosis. Chest. 2021 Dec;160(6):2051-2060. doi: 10.1016/j.chest.2021.07.024. Epub 2021 Jul 18. — View Citation

Singh VK, Schwarzenberg SJ. Pancreatic insufficiency in Cystic Fibrosis. J Cyst Fibros. 2017 Nov;16 Suppl 2:S70-S78. doi: 10.1016/j.jcf.2017.06.011. — View Citation

Stachowiak Z, Wojsyk-Banaszak I, Jonczyk-Potoczna K, Narozna B, Langwinski W, Szczepankiewicz A. Extracellular vesicles-derived miRNAs as mediators of pulmonary exacerbation in pediatric cystic fibrosis. J Breath Res. 2023 Feb 10;17(2). doi: 10.1088/1752- — View Citation

Tejero Garcia S, Giraldez Sanchez MA, Cejudo P, Quintana Gallego E, Dapena J, Garcia Jimenez R, Cano Luis P, Gomez de Terreros I. Bone health, daily physical activity, and exercise tolerance in patients with cystic fibrosis. Chest. 2011 Aug;140(2):475-481. doi: 10.1378/chest.10-1508. Epub 2011 Feb 3. — View Citation

Totani L, Plebani R, Piccoli A, Di Silvestre S, Lanuti P, Recchiuti A, Cianci E, Dell'Elba G, Sacchetti S, Patruno S, Guarnieri S, Mariggio MA, Mari VC, Anile M, Venuta F, Del Porto P, Moretti P, Prioletta M, Mucilli F, Marchisio M, Pandolfi A, Evangelista V, Romano M. Mechanisms of endothelial cell dysfunction in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis. 2017 Dec;1863(12):3243-3253. doi: 10.1016/j.bbadis.2017.08.011. Epub 2017 Aug 25. — View Citation

Tousson A, Van Tine BA, Naren AP, Shaw GM, Schwiebert LM. Characterization of CFTR expression and chloride channel activity in human endothelia. Am J Physiol. 1998 Dec;275(6):C1555-64. doi: 10.1152/ajpcell.1998.275.6.C1555. — View Citation

van de Weert-van Leeuwen PB, Hulzebos HJ, Werkman MS, Michel S, Vijftigschild LA, van Meegen MA, van der Ent CK, Beekman JM, Arets HG. Chronic inflammation and infection associate with a lower exercise training response in cystic fibrosis adolescents. Respir Med. 2014 Mar;108(3):445-52. doi: 10.1016/j.rmed.2013.08.012. Epub 2013 Aug 28. — View Citation

Wells GD, Wilkes DL, Schneiderman JE, Rayner T, Elmi M, Selvadurai H, Dell SD, Noseworthy MD, Ratjen F, Tein I, Coates AL. Skeletal muscle metabolism in cystic fibrosis and primary ciliary dyskinesia. Pediatr Res. 2011 Jan;69(1):40-5. doi: 10.1203/PDR.0b0 — View Citation

Williams CA, Barker AR, Denford S, van Beurden SB, Bianchim MS, Caterini JE, Cox NS, Mackintosh KA, McNarry MA, Rand S, Schneiderman JE, Wells GD, Anderson P, Beever D, Beverley Z, Buckley R, Button B, Causer AJ, Curran M, Dwyer TJ, Gordon W, Gruet M, Harris RA, Hatziagorou E, Erik Hulzebos HJ, Kampouras A, Morrison L, Camara MN, Reilly CM, Sawyer A, Saynor ZL, Shelley J, Spencer G, Stanford GE, Urquhart DS, Young R, Tomlinson OW; Youth Activity Unlimited - A Strategic Research Centre of the UK Cystic Fibrosis Trust. The Exeter Activity Unlimited statement on physical activity and exercise for cystic fibrosis: methodology and results of an international, multidisciplinary, evidence-driven expert consensus. Chron Respir Dis. 2022 Jan-Dec;19:14799731221121670. doi: 10.1177/14799731221121670. — View Citation

Zemanick ET, Ong T, Daines CL, Dellon EP, Muhlebach MS, Esther CR Jr. Highlights from the 2015 North American Cystic Fibrosis Conference. Pediatr Pulmonol. 2016 Jun;51(6):650-7. doi: 10.1002/ppul.23441. Epub 2016 Apr 13. — View Citation

* Note: There are 54 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Changes in peripheral muscle strength Upper and lower limbs muscle strength (kg) will be evaluated using dynamometers. Baseline, pre-intervention and immediately after the intervention.
Primary Changes in inspiratory/expiratory muscle strength (MIP/MEP) (cmH2O) Inspiratory and expiratory muscle strength: maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) will be measured. Baseline, pre-intervention and immediately after the intervention
Primary Changes in functional capacity: lower limbs power capacity 30 seconds sit-to-stand test. Unit of measurement: number of repetitions. Baseline, pre-intervention and immediately after the intervention
Primary Changes in functional capacity: walking capacity 10m Time (s) Up and Go tests. Baseline, pre-intervention and immediately after the intervention
Primary Change in Cardiorespiratory fitness: maximal oxygen consumption To assess cardiorespiratory fitness, a treadmill and a gas analyser will be used. The test aims to determine maximal oxygen consumption (VO2peak in ml/kg/min). VO2peak will be recorded as the highest value obtained during a continuous 30 s period. Baseline, pre-intervention and immediately after the intervention
Primary Change in Cardiorespiratory fitness: Ventilatory threshold VT1 To assess cardiorespiratory fitness, a treadmill and a gas analyser will be used. The test aims to determine the ventilatory threshold VT1 in response to maximal effort. VT1 will be determined using the criteria of an increase in both ventilatory equivalent for oxygen consumption (VE/VO2) and end-tidal oxygen pressure without an increase in ventilatory equivalent for carbon dioxide production (VE/VCO2). Baseline, pre-intervention and immediately after the intervention
Secondary Changes in Pulmonary Function: forced vital capacity (FVC) Spirometry will assess: forced vital capacity (FVC) in milliliters and percentage of predicted value Baseline, pre-intervention and immediately after the intervention
Secondary Changes in Pulmonary Function: Forced expiratory volume in the first second (FEV1) Spirometry will assess: forced expiratory volume in the first second (FEV1).Data will be expressed in absolute values and z-score based on the Global Lung Initiative (GLI) reference equation establishing as a limit of normality (LIN) a z-score value for FEV1 between -1.64 and + 1.64. Baseline, pre-intervention and immediately after the intervention
Secondary Changes in the anthropometric and body composition: Weight Weight (kg) Baseline, pre-intervention and immediately after the intervention
Secondary Changes in the anthropometric and body composition: Height Height (cm) Baseline, pre-intervention and immediately after the intervention
Secondary Changes in the anthropometric and body composition: BMI BMI (kg/m2) Baseline, pre-intervention and immediately after the intervention
Secondary Changes in body composition: Total fat mass Total fat mass (kg) Baseline, pre-intervention and immediately after the intervention
Secondary Changes in body composition: FMI fat mass index (FMI) (kg/m2), Baseline, pre-intervention and immediately after the intervention
Secondary Changes in body composition: lean mass kg Lean mass in kg Baseline, pre-intervention and immediately after the intervention
Secondary Changes in body composition: lean mass % Lean mass in % Baseline, pre-intervention and immediately after the intervention
Secondary Changes in quality of life using the Cystic Fibrosis Questionnaire Scores range from 0 to 100 with higher scores corresponding to better quality of life. Baseline, pre-intervention and immediately after the intervention
Secondary Changes in plasma levels muscle damage biomarkers Blood levels biomarkers of muscle damage as CK measured in micrograms per litre (mcg/L) Baseline, pre-intervention and immediately after the intervention
Secondary Changes in plasma levels of inflammation: hs-CRP High-sensitivity C-reactive protein (hs-CRP) assay in milligrams/litre Baseline, pre-intervention and immediately after the intervention
Secondary Changes in plasma levels of inflammation: Interleukins Analysis of interleukins such as IL6, IL-10 in picograms/millilitre Baseline, pre-intervention and immediately after the intervention
See also
  Status Clinical Trial Phase
Completed NCT04696198 - Thoracic Mobility in Cystic Fibrosis Care N/A
Completed NCT00803205 - Study of Ataluren (PTC124™) in Cystic Fibrosis Phase 3
Terminated NCT04921332 - Bright Light Therapy for Depression Symptoms in Adults With Cystic Fibrosis (CF) and COPD N/A
Completed NCT03601637 - Safety and Pharmacokinetic Study of Lumacaftor/Ivacaftor in Participants 1 to Less Than 2 Years of Age With Cystic Fibrosis, Homozygous for F508del Phase 3
Terminated NCT02769637 - Effect of Acid Blockade on Microbiota and Inflammation in Cystic Fibrosis (CF)
Recruiting NCT06030206 - Lung Transplant READY CF 2: A Multi-site RCT N/A
Recruiting NCT06012084 - The Development and Evaluation of iCF-PWR for Healthy Siblings of Individuals With Cystic Fibrosis N/A
Recruiting NCT06032273 - Lung Transplant READY CF 2: CARING CF Ancillary RCT N/A
Recruiting NCT06088485 - The Effect of Bone Mineral Density in Patients With Adult Cystic Fibrosis
Recruiting NCT05392855 - Symptom Based Performance of Airway Clearance After Starting Highly Effective Modulators for Cystic Fibrosis (SPACE-CF) N/A
Recruiting NCT04056702 - Impact of Triple Combination CFTR Therapy on Sinus Disease.
Recruiting NCT04039087 - Sildenafil Exercise: Role of PDE5 Inhibition Phase 2/Phase 3
Completed NCT04058548 - Clinical Utility of the 1-minute Sit to Stand Test as a Measure of Submaximal Exercise Tolerance in Patients With Cystic Fibrosis During Acute Pulmonary Exacerbation N/A
Completed NCT04038710 - Clinical Outcomes of Triple Combination Therapy in Severe Cystic Fibrosis Disease.
Completed NCT03637504 - Feasibility of a Mobile Medication Plan Application in CF Patient Care N/A
Recruiting NCT03506061 - Trikafta in Cystic Fibrosis Patients Phase 2
Completed NCT03566550 - Gut Imaging for Function & Transit in Cystic Fibrosis Study 1
Recruiting NCT04828382 - Prospective Study of Pregnancy in Women With Cystic Fibrosis
Completed NCT04568980 - Assessment of Contraceptive Safety and Effectiveness in Cystic Fibrosis
Recruiting NCT04010253 - Impact of Bronchial Drainage Technique by the Medical Device Simeox® on Respiratory Function and Symptoms in Adult Patients With Cystic Fibrosis N/A