Cystic Fibrosis Clinical Trial
Official title:
An Open-label, Dose-escalation Study to Evaluate the Pharmacokinetics of Inhaled Teicoplanin in Cystic Fibrosis Patients
Verified date | December 2020 |
Source | Neupharma Srl |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Cystic Fibrosis (CF) is the most common autosomal recessive lethal disorders affecting 1:2.500 newborns among Caucasians. CF patients are peculiarly susceptible to infection and colonization of the respiratory tract with pathogens. In particular, Methicillin-resistant Staphylococcus aureus (MRSA) has become the third most prevalent bacterium in CF in the U.S. and has been increasing in other countries. Apart from the difficulty of treating the infection because of its antimicrobial resistances, MRSA is transmissible between individuals with and without CF. Chronic MRSA infection is associated with worse outcomes, and treatment/eradication is challenging. Antibiotic dosing and choices should be optimized to minimize further resistance and to maximize chances of successful therapy. Yet, MRSA has several mechanisms to escape clearance by the immune system and antibiotic killing. For these reasons, a better understanding of preventive measures and early therapy is of key importance. In consideration of all these assessments there is an emerging consensus that MRSA is an important pathogen in CF rather than simply a marker of severe disease. However, to date there are no guidelines or recommendations on the choice of antibiotics for MRSA in CF. Glycopeptides are an important class of antibiotics active against Gram-positive pathogens. These include teicoplanin and vancomycin, which are currently in widespread use and are active against MRSA. Teicoplanin is often preferred to vancomycin for intravenous treatment because of its better safety profile but its use in MRSA lung infection is limited by its limited lung penetration. Teicoplanin is mainly used for injection/infusion. Inhalation of anti-microbial drugs is a cornerstone in the treatment of patients with CF, since inhaled antibiotics decrease the rate of decline of lung function, improve the quality of life, and reduce the frequency of exacerbations and hospital admissions. It is expected that, using inhalation route, efficacy would be improved and risk of resistance reduced. At present, no antibiotic active against MRSA is available as an inhaled formulation. The objective of this phase I, first-in-man clinical study is to identify the dose providing, after single inhalation administration, a sputum Teicoplanin concentrations exceeding the drug concentration required to inhibit bacterial growth for at least 8 hours, while minimizing the development of resistance.
Status | Completed |
Enrollment | 12 |
Est. completion date | September 30, 2020 |
Est. primary completion date | September 16, 2020 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | INCLUSION CRITERIA: 1. Male or female patients, aged =18 years with a confirmed diagnosis of cystic fibrosis. 2. Patients with body weight =50 kg and =100 kg 3. Patients with body mass index (BMI) between 18.0 and 30 kg/m2. 4. Patients with FEV1 > 50% of predicted. 5. Patients with regular mucus production due to cystic fibrosis. 6. Patients who are able to understand the nature of the study and willing to comply with the protocol requirements. 7. Patients who have signed written informed consent to participate to the study after risks have been fully explained. EXCLUSION CRITERIA: 1. Patients treated with nebulized antibiotics within 14 days or mucolytic agents, hypertonic saline solution within 48 hours before administration of the Investigational Product or during the study. 2. Patients with medical history of hemoptysis (> 300 cc in 30 days). 3. Patients with decreased liver function (AST or ALT > 3 times higher in comparison to reference values). 4. Patients with eGFR < 60 mL/min/1.73 m2 5. Patients on the waiting list for lung transplantation. 6. Patients with known or suspected allergy or hypersensitivity to glycopeptides. 7. Patients treated with Teicoplanin for inhalation and systemic within 4 weeks before each dosing occasion. 8. Patients with known episodes of bronchoconstriction after drug inhalation. 9. Patients who are participating or have participated in other clinical studies within the 30 days before the study enrolment. 10. Female patients who are pregnant or breast-feeding or who wish to become pregnant during the period of the clinical study and for one months later. 11. Female patients of childbearing age (less than 24 months after the last menstrual cycle) who do not use adequate contraception. * * Methods at low risk of contraceptive failure (less than 1% per year) when used consistently, including: combined (estrogen and progestogen containing) hormonal contraception associated with inhibition of ovulation (oral, intravaginal, transdermal), progestogen-only hormonal contraception associated with inhibition of ovulation (oral, injectable, implantable), some intra-uterine devices, abstinence or vasectomized partner. Contraception should be maintained until 1 month after the last visit. |
Country | Name | City | State |
---|---|---|---|
Italy | Centro Ricerche Cliniche di Verona - Azienda Ospedaliera Universitaria Integrata di Verona | Verona |
Lead Sponsor | Collaborator |
---|---|
Neupharma Srl | Aptuit Srl, Pari Pharma GmbH, Sintesi Research Srl |
Italy,
Ballmann M, Rabsch P, von der Hardt H. Long-term follow up of changes in FEV1 and treatment intensity during Pseudomonas aeruginosa colonisation in patients with cystic fibrosis. Thorax. 1998 Sep;53(9):732-7. — View Citation
Beltrametti F, Consolandi A, Carrano L, Bagatin F, Rossi R, Leoni L, Zennaro E, Selva E, Marinelli F. Resistance to glycopeptide antibiotics in the teicoplanin producer is mediated by van gene homologue expression directing the synthesis of a modified cell wall peptidoglycan. Antimicrob Agents Chemother. 2007 Apr;51(4):1135-41. Epub 2007 Jan 12. — View Citation
Boxerbaum B, Jacobs MR, Cechner RL. Prevalence and significance of methicillin-resistant Staphylococcus aureus in patients with cystic fibrosis. Pediatr Pulmonol. 1988;4(3):159-63. Erratum in: Pediatr Pulmonol 1988;5(1):66. — View Citation
Burns JL, Gibson RL, McNamara S, Yim D, Emerson J, Rosenfeld M, Hiatt P, McCoy K, Castile R, Smith AL, Ramsey BW. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis. 2001 Feb 1;183(3):444-52. Epub 2000 Dec 27. — View Citation
Cavalcanti AB, Goncalves AR, Almeida CS, Bugano DD, Silva E. Teicoplanin versus vancomycin for proven or suspected infection. Cochrane Database Syst Rev. 2010 Jun 16;(6):CD007022. doi: 10.1002/14651858.CD007022.pub2. Review. — View Citation
Cystic Fibrosis foundation Patient Registry: Annual Data Report 2015
Dasenbrook EC, Checkley W, Merlo CA, Konstan MW, Lechtzin N, Boyle MP. Association between respiratory tract methicillin-resistant Staphylococcus aureus and survival in cystic fibrosis. JAMA. 2010 Jun 16;303(23):2386-92. doi: 10.1001/jama.2010.791. — View Citation
Dasenbrook EC, Merlo CA, Diener-West M, Lechtzin N, Boyle MP. Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. Am J Respir Crit Care Med. 2008 Oct 15;178(8):814-21. doi: 10.1164/rccm.200802-327OC. Epub 2008 Jul 31. — View Citation
Denton M. Re: "Methicillin-resistant Staphylococcus aureus in children with cystic fibrosis: an eradication protocol" Solis et al. (Pediatr Pulmonol 2003;36: 189-195). Pediatr Pulmonol. 2004 Sep;38(3):272-3. — View Citation
Dolce D, Neri S, Grisotto L, Campana S, Ravenni N, Miselli F, Camera E, Zavataro L, Braggion C, Fiscarelli EV, Lucidi V, Cariani L, Girelli D, Faelli N, Colombo C, Lucanto C, Lombardo M, Magazzù G, Tosco A, Raia V, Manara S, Pasolli E, Armanini F, Segata N, Biggeri A, Taccetti G. Methicillin-resistant Staphylococcus aureus eradication in cystic fibrosis patients: A randomized multicenter study. PLoS One. 2019 Mar 22;14(3):e0213497. doi: 10.1371/journal.pone.0213497. eCollection 2019. — View Citation
Elborn JS. Cystic fibrosis. Lancet. 2016 Nov 19;388(10059):2519-2531. doi: 10.1016/S0140-6736(16)00576-6. Epub 2016 Apr 29. Review. — View Citation
Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol. 2002 Aug;34(2):91-100. — View Citation
Frederiksen B, Koch C, Høiby N. Changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients (1974-1995). Pediatr Pulmonol. 1999 Sep;28(3):159-66. — View Citation
Goodrich JS, Sutton-Shields TN, Kerr A, Wedd JP, Miller MB, Gilligan PH. Prevalence of community-associated methicillin-resistant Staphylococcus aureus in patients with cystic fibrosis. J Clin Microbiol. 2009 Apr;47(4):1231-3. doi: 10.1128/JCM.00255-09. Epub 2009 Feb 18. — View Citation
Goss CH, Muhlebach MS. Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros. 2011 Sep;10(5):298-306. doi: 10.1016/j.jcf.2011.06.002. Epub 2011 Jun 29. Review. — View Citation
Greenwood D. Microbiological properties of teicoplanin. J Antimicrob Chemother. 1988 Jan;21 Suppl A:1-13. Review. — View Citation
Guillon A, Mercier E, Lanotte P, Haguenoer E, Darrouzain F, Barc C, Sarradin P, Si-Tahar M, Heuzé-Vourc'h N, Diot P, Vecellio L. Aerosol Route to Administer Teicoplanin in Mechanical Ventilation: In Vitro Study, Lung Deposition and Pharmacokinetic Analyses in Pigs. J Aerosol Med Pulm Drug Deliv. 2015 Aug;28(4):290-8. doi: 10.1089/jamp.2014.1164. Epub 2015 Jan 23. — View Citation
Gur M, Spinelli E, Tridello G, Baltieri S, Pinali L, Montemezzi S, Bentur L, Assael BM. Chest computed tomography scores in patients with cystic fibrosis colonized with methicillin-resistant Staphylococcus aureus. Clin Respir J. 2018 Feb;12(2):779-785. doi: 10.1111/crj.12594. Epub 2017 May 4. — View Citation
Harik NS, Com G, Tang X, Melguizo Castro M, Stemper ME, Carroll JL. Clinical characteristics and epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in children with cystic fibrosis from a center with a high MRSA prevalence. Am J Infect Control. 2016 Apr 1;44(4):409-15. doi: 10.1016/j.ajic.2015.10.015. Epub 2015 Dec 9. — View Citation
Henry RL, Mellis CM, Petrovic L. Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol. 1992 Mar;12(3):158-61. — View Citation
Hidron AI, Low CE, Honig EG, Blumberg HM. Emergence of community-acquired meticillin-resistant Staphylococcus aureus strain USA300 as a cause of necrotising community-onset pneumonia. Lancet Infect Dis. 2009 Jun;9(6):384-92. doi: 10.1016/S1473-3099(09)70133-1. Review. — View Citation
Huang YJ, LiPuma JJ. The Microbiome in Cystic Fibrosis. Clin Chest Med. 2016 Mar;37(1):59-67. doi: 10.1016/j.ccm.2015.10.003. Epub 2015 Dec 23. Review. — View Citation
Lo DK, Hurley MN, Muhlebach MS, Smyth AR. Interventions for the eradication of meticillin-resistant Staphylococcus aureus (MRSA) in people with cystic fibrosis. Cochrane Database Syst Rev. 2015 Feb 24;(2):CD009650. doi: 10.1002/14651858.CD009650.pub3. Review. Update in: Cochrane Database Syst Rev. 2018 Jul 21;7:CD009650. — View Citation
Matsumoto K, Watanabe E, Kanazawa N, Fukamizu T, Shigemi A, Yokoyama Y, Ikawa K, Morikawa N, Takeda Y. Pharmacokinetic/pharmacodynamic analysis of teicoplanin in patients with MRSA infections. Clin Pharmacol. 2016 Mar 30;8:15-8. doi: 10.2147/CPAA.S96143. eCollection 2016. — View Citation
Mercier E, Darrouzain F, Montharu J, Guillon A, Diot P, Paintaud G, Vecellio L. Lung and serum teicoplanin concentration after aerosol and intravenous administration in a rat model. J Aerosol Med Pulm Drug Deliv. 2014 Aug;27(4):306-12. doi: 10.1089/jamp.2013.1060. Epub 2013 Dec 9. — View Citation
Miall LS, McGinley NT, Brownlee KG, Conway SP. Methicillin resistant Staphylococcus aureus (MRSA) infection in cystic fibrosis. Arch Dis Child. 2001 Feb;84(2):160-2. — View Citation
Muhlebach MS. Methicillin-resistant Staphylococcus aureus in cystic fibrosis: how should it be managed? Curr Opin Pulm Med. 2017 Nov;23(6):544-550. doi: 10.1097/MCP.0000000000000422. Review. — View Citation
Parenti F. Structure and mechanism of action of teicoplanin. J Hosp Infect. 1986 Mar;7 Suppl A:79-83. Review. — View Citation
Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros. 2015 May;14(3):293-304. doi: 10.1016/j.jcf.2015.03.012. Epub 2015 Apr 14. Review. — View Citation
Quon BS, Goss CH, Ramsey BW. Inhaled antibiotics for lower airway infections. Ann Am Thorac Soc. 2014 Mar;11(3):425-34. doi: 10.1513/AnnalsATS.201311-395FR. Review. — View Citation
Ramos-Martín V, Johnson A, McEntee L, Farrington N, Padmore K, Cojutti P, Pea F, Neely MN, Hope WW. Pharmacodynamics of teicoplanin against MRSA. J Antimicrob Chemother. 2017 Dec 1;72(12):3382-3389. doi: 10.1093/jac/dkx289. — View Citation
Ratjen F, Döring G. Cystic fibrosis. Lancet. 2003 Feb 22;361(9358):681-9. Review. — View Citation
Ratjen F. Diagnosing and managing infection in CF. Paediatr Respir Rev. 2006;7 Suppl 1:S151-3. Epub 2006 Jun 6. Review. — View Citation
Reynolds PE. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis. 1989 Nov;8(11):943-50. Review. — View Citation
Schreiber MP, Chan CM, Shorr AF. Resistant pathogens in nonnosocomial pneumonia and respiratory failure: is it time to refine the definition of health-care-associated pneumonia? Chest. 2010 Jun;137(6):1283-8. doi: 10.1378/chest.09-2434. Epub 2010 Feb 12. — View Citation
Sipahi OR, Arda B, Yurtseven T, Sipahi H, Ozgiray E, Suntur BM, Ulusoy S. Vancomycin versus teicoplanin in the therapy of experimental methicillin-resistant Staphylococcus aureus (MRSA) meningitis. Int J Antimicrob Agents. 2005 Nov;26(5):412-5. Epub 2005 Oct 10. — View Citation
Solís A, Brown D, Hughes J, Van Saene HK, Heaf DP. Methicillin-resistant Staphylococcus aureus in children with cystic fibrosis: An eradication protocol. Pediatr Pulmonol. 2003 Sep;36(3):189-95. — View Citation
Svetitsky S, Leibovici L, Paul M. Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother. 2009 Oct;53(10):4069-79. doi: 10.1128/AAC.00341-09. Epub 2009 Jul 13. Review. — View Citation
Teicoplanin Sandoz powder and solvent for solution 200 mg in 3 mL - Summary of the product characteristics
Vanderhelst E, De Meirleir L, Verbanck S, Piérard D, Vincken W, Malfroot A. Prevalence and impact on FEV(1) decline of chronic methicillin-resistant Staphylococcus aureus (MRSA) colonization in patients with cystic fibrosis. A single-center, case control study of 165 patients. J Cyst Fibros. 2012 Jan;11(1):2-7. doi: 10.1016/j.jcf.2011.08.006. Epub 2011 Sep 9. — View Citation
Waters V. New treatments for emerging cystic fibrosis pathogens other than Pseudomonas. Curr Pharm Des. 2012;18(5):696-725. Review. — View Citation
Wilson AP. Clinical pharmacokinetics of teicoplanin. Clin Pharmacokinet. 2000 Sep;39(3):167-83. Review. — View Citation
* Note: There are 42 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Concentration of Teicoplanin in the sputum of CF patients treated with inhaled Teicoplanin. | Measurement of the concentration (expressed as mg/L) of Teicoplanin in the sputum of patients suffering of Cystic Fibrosis after a single inhalation of 150 mg at scheduled time points after first inhalation: 0 hours, 0.5 hours, 2 hours, 4 hours, 8 hours, 12 hours, 24 hours, 30 hours, 48 hours. In case a value of sputum AUC0-12 h above 300 µg/mL*h will not be achieved with the first dosage inhalation of Teicoplanin, up to two additional inhalations with different dosages will be foreseen and the same time points will be measured for subsequent inhalations. In addition, the inhalation of Teicoplanin with the maximum (300 mg) dosage foreseen by study protocol is expected for all patients aiming to confirm the optimal intermediate dosage tested during the dose-escalation process. | Change occurring from pre-inhalation (0 hours) to the following time points: after 0.5 hours, 2 hours, 4 hours, 8 hours, 12 hours, 24 hours, 30 hours, 48 hours from each inhalation. | |
Secondary | Concentration of Teicoplanin in the blood of CF patients treated with inhaled Teicoplanin. | Measurement of the concentration (expressed as mg/L) of Teicoplanin in the blood of patients suffering of Cystic Fibrosis after a single inhalation of 150 mg at scheduled time points after first inhalation: 0 hours, 0.5 hours, 2 hours, 4 hours, 8 hours, 12 hours, 24 hours. In case a value of sputum AUC0-12 h above 300 µg/mL*h will not be achieved with the first dosage inhalation of Teicoplanin, up to two additional inhalations with different dosages will be foreseen and the same time points will be measured for subsequent inhalations. In addition, the inhalation of Teicoplanin with the maximum (300 mg) dosage foreseen by study protocol is expected for all patients aiming to confirm the optimal intermediate dosage tested during the dose-escalation process. | Change occurring from pre-inhalation (0 hours) to the following time points: after 0.5 hours, 2 hours, 4 hours, 8 hours, 12 hours, 24 hours from each inhalation. | |
Secondary | Concentration of Teicoplanin in the urine of CF patients treated with inhaled Teicoplanin. | Measurement of the concentration (expressed as mg/L) of Teicoplanin in the urine of patients suffering of Cystic Fibrosis after a single inhalation of 150 mg at scheduled time intervals after first inhalation: 0 h, 0 - 4 h, 4 - 12 h, 12 - 24 h and after 48 hours from inhalation. In case a value of sputum AUC0-12 h above 300 µg/mL*h will not be achieved with the first dosage inhalation of Teicoplanin, up to two additional inhalations with different dosages will be foreseen and the same time intervals will be measured for subsequent inhalations. In addition, the inhalation of Teicoplanin with the maximum (300 mg) dosage foreseen by study protocol is expected for all patients aiming to confirm the optimal intermediate dosage tested during the dose-escalation process. | Change occurring from pre-inhalation (0 hours) to the following time points: during the intervals 0-4 hours, 4-12 hours, 12-24 hours from each inhalation + after 48 hours from inhalation. | |
Secondary | Comparison between concentrations of Teicoplanin in the sputum, blood and urine of CF patients treated with inhaled Teicoplanin. | Comparison between the concentration (expressed as mg/L) of Teicoplanin measured in the sputum, blood and urine of patients suffering of Cystic Fibrosis after a single inhalation of 150 mg versus additional dosages of Teicoplanin (including the maximum dosage tested). | During each inhalation visit throughout study period, an average of 3 months per patient. | |
Secondary | Percentage of change of FEV1 value (by means of Spirometry test) in comparison to baseline (pre-inhalation) in CF patients treated with inhaled Teicoplanin (as part of Tolerability outcome). | Measurement of any changes (as percent) in the Forced Expiratory Volume in the 1st second (FEV1) measured 30 minutes before and 30 and 60 minutes after a single inhalation of 150 mg of inhaled Teicoplanin. In case of FEV1 reduction > 5% in comparison to baseline the FEV1 will be measured also after 120 minutes from inhalation. | 30 minutes pre-inhalation + after 30 minutes, 60 minutes and 120 minutes (if needed) from each inhalation. | |
Secondary | Percentage of change of blood oxigen saturation value (by means of Pulse Oximetry test) in comparison to baseline (pre-inhalation) in CF patients treated with inhaled Teicoplanin (as part of Tolerability outcome). | Measurement of any changes (as percent) in the blood oxigen saturation measured 30 minutes before and 30 minutes + 4 hours after a single inhalation of 150 mg of inhaled Teicoplanin. | 30 minutes pre-inhalation + after 30 minutes and 4 hours from each inhalation. | |
Secondary | Rate and characterization of adverse events occurring to CF patients treated with inhaled Teicoplanin (as part of Safety outcome). | Evaluation of the number, rate and characteristics of the adverse events occurring to CF patients treated with inhaled Teicoplanin, as recorded in the Case Report Form. Any adverse events occurring during the inhalation visits will be also evaluated from a Tolerability point of view. | During the entire study period, an average of 3 months per patient. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04696198 -
Thoracic Mobility in Cystic Fibrosis Care
|
N/A | |
Completed |
NCT00803205 -
Study of Ataluren (PTC124™) in Cystic Fibrosis
|
Phase 3 | |
Terminated |
NCT04921332 -
Bright Light Therapy for Depression Symptoms in Adults With Cystic Fibrosis (CF) and COPD
|
N/A | |
Completed |
NCT03601637 -
Safety and Pharmacokinetic Study of Lumacaftor/Ivacaftor in Participants 1 to Less Than 2 Years of Age With Cystic Fibrosis, Homozygous for F508del
|
Phase 3 | |
Terminated |
NCT02769637 -
Effect of Acid Blockade on Microbiota and Inflammation in Cystic Fibrosis (CF)
|
||
Recruiting |
NCT06032273 -
Lung Transplant READY CF 2: CARING CF Ancillary RCT
|
N/A | |
Recruiting |
NCT06012084 -
The Development and Evaluation of iCF-PWR for Healthy Siblings of Individuals With Cystic Fibrosis
|
N/A | |
Recruiting |
NCT06030206 -
Lung Transplant READY CF 2: A Multi-site RCT
|
N/A | |
Recruiting |
NCT06088485 -
The Effect of Bone Mineral Density in Patients With Adult Cystic Fibrosis
|
||
Recruiting |
NCT05392855 -
Symptom Based Performance of Airway Clearance After Starting Highly Effective Modulators for Cystic Fibrosis (SPACE-CF)
|
N/A | |
Recruiting |
NCT04056702 -
Impact of Triple Combination CFTR Therapy on Sinus Disease.
|
||
Recruiting |
NCT04039087 -
Sildenafil Exercise: Role of PDE5 Inhibition
|
Phase 2/Phase 3 | |
Completed |
NCT04058548 -
Clinical Utility of the 1-minute Sit to Stand Test as a Measure of Submaximal Exercise Tolerance in Patients With Cystic Fibrosis During Acute Pulmonary Exacerbation
|
N/A | |
Completed |
NCT04038710 -
Clinical Outcomes of Triple Combination Therapy in Severe Cystic Fibrosis Disease.
|
||
Completed |
NCT03637504 -
Feasibility of a Mobile Medication Plan Application in CF Patient Care
|
N/A | |
Recruiting |
NCT03506061 -
Trikafta in Cystic Fibrosis Patients
|
Phase 2 | |
Completed |
NCT03566550 -
Gut Imaging for Function & Transit in Cystic Fibrosis Study 1
|
||
Recruiting |
NCT04828382 -
Prospective Study of Pregnancy in Women With Cystic Fibrosis
|
||
Completed |
NCT04568980 -
Assessment of Contraceptive Safety and Effectiveness in Cystic Fibrosis
|
||
Recruiting |
NCT04010253 -
Impact of Bronchial Drainage Technique by the Medical Device Simeox® on Respiratory Function and Symptoms in Adult Patients With Cystic Fibrosis
|
N/A |