View clinical trials related to Cushing Syndrome.
Filter by:Cushing Syndrome is an endocrine disorder causing an over production of the hormone cortisol. Cortisol is produced in the adrenal gland as a response to the production of corticotropin (ACTH) in the pituitary gland. Between 10% and 20% of patients with hypercortisolism (Cushing Syndrome) have ectopic production of the hormone ACTH. Meaning, the hormone is not being released from the normal site, the pituitary gland. In many cases the ectopic ACTH is being produced by a tumor of the lung, thymus, or pancreas. However, in approximately 50% of these patients the source of the ACTH cannot be found even with the use of extensive imaging studies such as computed tomography (CT) scans, magnetic resonance imaging (MRI), and nuclear scans (111-indium pentetreotide). The ability of these tests to locate the source of the hormone production is dependent on the changes of anatomy and / or the dose and adequate uptake of the radioactive agent. The inability to detect the source of ectopic ACTH production often results in unnecessary pituitary surgery or irradiation. Unlike the previously described tests, positron emission tomography (PET scan) has the ability to detect pathologic tissue based on physiologic and biochemical processes within the abnormal tissue. This study will test whether fluorine-18-fluorodeoxyglucose (FDG), fluorine-18-dihydroxyphenylalanine (F-DOPA) or use of a higher dose of 111-indium pentetreotide can be used to successfully localize the source of ectopic ACTH production.
Patients with Cushing disease have hormone producing tumors in their pituitary gland. Often these tumors are so small they cannot be detected by magnetic resonance imaging (MRI). The inferior petrosal sinuses are small veins that drain the blood from the pituitary gland. By taking a small sample of blood from these sinuses, doctors can differentiate a small tumor in the pituitary gland from other tumors in the body producing the hormone. Patients with Cushing disease have high levels of the hormone ACTH in the petrosal sinuses. Patients with other causes of Cushing syndrome do not have increased levels of ACTH in the petrosal sinuses. The procedure to collect blood from the petrosal sinus is called Inferior Petrosal Sinus Sampling (IPSS). The technique is very sensitive and can tell the difference between a pituitary tumor and other causes of Cushing syndrome nearly 100% of the time. However, IPSS is very difficult to perform and is only available in a few hospitals. Therefore, researchers are looking for another possible way to diagnose Cushing syndrome that would be less technically difficult and more readily available to patients. ACTH is produced in the pituitary gland as a response to the production of Corticotropin-Releasing Hormone (CRH) in the brain (hypothalamus). This study will compare ACTH levels in the internal jugular veins before and after CRH stimulation with those obtained by conventional IPSS from patients with Cushing's syndrome. Obtaining blood from the jugular veins is a simple, practically risk free procedure that could be done easily in a community hospital on an out patient basis. Researchers believe that CRH stimulation will increase ACTH production from tumors of the pituitary gland (corticotroph adenomas) so that the diagnostic information from jugular venous sampling would be equivalent to that of IPSS. This proposal to develop jugular venous sampling (JVS) with CRH stimulation as a test for the differential diagnosis of Cushing Syndrome would potentially contribute greatly to the medical care of patients with Cushing syndrome, as a less costly, safer and more widely available alternative to IPSS.<TAB>
Lentiginosis refers to groups of diseases marked by the presence of pigmented spots on the skin. These conditions are most commonly associated with multiple tumors and changes in hormone producing glands. The cause of these diseases is unknown, but researchers suggest there may be a level of inheritance involved in their development. Meaning to say that some of these diseases may "run in the family" and be passed down form generation to generation. Primary pigmented nodular adrenocortical disease (PPNAD) is a pituitary-independent, primary adrenal form of hypercortisolism characterized by; 1. Resistance to suppression by the drug dexamethasone 2. The body is unable to secrete cortisol in a normal rhythm 3. Distinct microscopic changes of both adrenal glands PPNAD can be associated with tumors (myxomas) of the skin, heart, breast, tumors (swannomas) of the nerve sheaths, pigmented spots (nevi and lentigines) of the skin, growth hormone (GH) producing tumors of the pituitary gland, and tumors of the testicles, ovaries, and thyroid gland. In the presence of these associations the condition is referred to as the Carney Complex. Presently there are no tests for screening of PPNAD and the Carney Complex. In addition, it is unknown how these conditions are genetically transferred from generation to generation. This study proposes to use standard methods of clinical testing for endocrine and nonendocrine diseases and genetic testing in order to; 1. Define the genetic basis for PPNAD and/or the Carney Complex. 2. Determine the molecular changes associated with the development of the tumors. 3. Identify carriers of the disease. 4. Determine the prognosis for carriers and affected individuals. 5. Provide sufficient data for genetic counseling of families with PPNAD and/or Carney Complex.<TAB>...
Corticotropin Releasing Hormone (CRH) is a hypothalamic hormone made up of 41 amino acids. Amino acids are proteins that when combined make up different substances, like hormones. The order of amino acids in CRH, has been determined, meaning that the hormone can now be synthetically reproduced in a laboratory setting. When CRH is released from the hypothalamus it stimulates the pituitary gland to secrete another hormone, ACTH. ACTH then causes the adrenal glands to make a third hormone, cortisol. This process is known as the hypothalamic-pituitary-adrenal axis. Problems can occur in any of the steps of this process and result in a variety of diseases (Cushing's Syndrome and adrenal insufficiency). Researchers hope that CRH created in a laboratory setting, ovine CRH (oCRH) can be used to help diagnose and treat conditions of the HPA axis. This study will test the relationship for single doses of oCRH in normal volunteers and patients with disorders of the HPA axis. The oCRH will be injected into the patients vein as a single injection or slowly through an IV line over 24 hours. The participants will have blood tests taken to measure hormone levels before, during, and after receiving the oCRH.