COPD Clinical Trial
Official title:
Use of Autologous Stem/Stromal Cells in Chronic Lung Disorders: Obstructive (COPD) and Restrictive (RLD)
Pulmonary Disorders are often categorized as Obstructive or Restrictive disorders. This study will establish two channels of investigation, one group within each type of pulmonary dysfunction. State-of-the-Art Objective analytics will be employed to track patients from baseline and 6 month intervals for up to one year. Chronic Obstructive Pulmonary Disease (COPD) is a lung-related disorder that is characterized by long-term, often progressive state of poor airflow. Primary symptoms include low oxygen tension, shortness of breath, productive cough, and broncho-pulmonary inflammation and interference with oxygen-carbon dioxide exchange. COPD is generally considered those who are able to better inspire air than to expel. Restrictive lung dysfunctions are generally considered those who are unable to achieve full inspiration function. Both can create some of the same symptoms, low Oxygen exchange, activity intolerance of exertion, shortness of breath (SOB), Pulmonary Hypertension, Loss of lung structure, Pneumothorax (in emphysema), may mandate supplemental Oxygen therapy, failure of airway mucus management (chronic bronchitis, bronchiectasis, etc), and other failure of lung function issues. Restrictive lung disorders represent a group of pulmonary function losses which are due to acquired fibrosis, congenital fibrotic disorders, functional airway damage (scarring), vascular abnormalities in arterial/venous supply, Air pollution and tobacco smoking, chemical inhalation damage, etc. are felt to be common contributor of these issues. Diagnostic testing is based on poor airflow measured by lung function studies and whose symptoms do not improve much with anti-asthma bronchodilators, steroids, and a variety of combination of topical medications. Study is an interventional study to document the safety and efficacy of use of cSVF in chronic broncho-pulmonary disease within both groups.
Pulmonary Disorders, including both COPD & Restrictive Lung Disease (RLD) are often treated by limiting exposure to poor air quality, but there is no cure at this time. Most commonly, the patients are treated upon exacerbations, usually with some combination of inhalers, steroids, and medications which have proven to be ineffective other than addressing symptoms and trying to return to baseline symptom help. In addition, many attempted efforts are aimed at environmental changes, therapy include smoking cessation, vaccinations, respiratory rehabilitation, and attempts of use of bronchodilators and topical and systemic steroids. Many must resort to supplemental oxygen therapy, lung transplantation, and antibiotic supportive therapy during exacerbations. As of 2013, COPD involve approximately 5% of the global populations (approximately 330 million). Most commonly it occurs approximately equally between men/women and result in about 3 million deaths per year. Estimates of economic costs are estimated to be more than 2.1 trillion dollars in 2010. This study includes microcannula harvesting of subdermal adipose tissues, incubation, digestion and isolation of AD-cSVF. This stromal cellular pellet (without actual extracellular matrix or stromal elements) is then suspended in 500 cc sterile Normal Saline (NS) and deployed via peripheral intravenous route. Evaluations of safety issues are measured at intervals (both severe and non-severe categories) and by repeated pulmonary function studies. Most pulmonary function tests are, at best some help, but there is now a remarkable testing that is substantially more informative than standard flow measurements, as they include extensive anatomical and functional insights using High Resolution Computerized Tomography (HRCT) Lung. This protocol allows for direct evidence of the air trapping, lung volume capabilities, and three dimensional imaging of the airways and lungs themselves. This modality will be the primary comparative between baseline and 6 month post-therapy in determination of the status and changes than can be demonstrated following use of cellular stromal vascular fraction (cSVF). After isolation and concentration of the stem/stromal cells via digestive processing, deployment of such cellular elements are believed to engraft within the lung capillary tissues. Engraftment is not currently believed to be the primary elements following parenteral (IV) placement. Rather, it is believed to represent the paracrine secretory and communication between cell-to-cell or cell-to-matrix which communicates via exosomal and microvesicular contents that are released to influence the local niche (microenvironment). Via transfer of microRNA (mRNA) or mitoRNA (miRNA), stem cells are able to help other pulmonary cells replace or repair damaged elements associated with lung disorders. Further, these secretions and growth factor/cytokines availability have a positive influence on the small capillaries within the lung parenchyma, thereby likely to improve the gas exchange function within the lungs. Tracking of oxygen saturation (at rest and activity), use of inhalers or other rescue effort reduction, reduction of oxygen supplement, and improved respiratory efforts will be performed. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06000696 -
Healthy at Home Pilot
|
||
Active, not recruiting |
NCT03927820 -
A Pharmacist-Led Intervention to Increase Inhaler Access and Reduce Hospital Readmissions (PILLAR)
|
N/A | |
Completed |
NCT04043728 -
Addressing Psychological Risk Factors Underlying Smoking Persistence in COPD Patients: The Fresh Start Study
|
N/A | |
Completed |
NCT04105075 -
COPD in Obese Patients
|
||
Recruiting |
NCT05825261 -
Exploring Novel Biomarkers for Emphysema Detection
|
||
Active, not recruiting |
NCT04075331 -
Mepolizumab for COPD Hospital Eosinophilic Admissions Pragmatic Trial
|
Phase 2/Phase 3 | |
Terminated |
NCT03640260 -
Respiratory Regulation With Biofeedback in COPD
|
N/A | |
Recruiting |
NCT04872309 -
MUlti-nuclear MR Imaging Investigation of Respiratory Disease-associated CHanges in Lung Physiology
|
||
Recruiting |
NCT05145894 -
Differentiation of Asthma/COPD Exacerbation and Stable State Using Automated Lung Sound Analysis With LungPass Device
|
||
Withdrawn |
NCT04210050 -
Sleep Ventilation for Patients With Advanced Hypercapnic COPD
|
N/A | |
Terminated |
NCT03284203 -
Feasibility of At-Home Handheld Spirometry
|
N/A | |
Recruiting |
NCT06110403 -
Impact of Long-acting Bronchodilator- -Corticoid Inhaled Therapy on Ventilation, Lung Function and Breathlessness
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT06040424 -
Comparison of Ipratropium / Levosalbutamol Fixed Dose Combination and Ipratropium and Levosalbutamol Free Dose Combination in pMDI Form in Stable Chronic Obstructive Pulmonary Disease (COPD) Patients
|
Phase 3 | |
Recruiting |
NCT05865184 -
Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
|
||
Recruiting |
NCT04868357 -
Hypnosis for the Management of Anxiety and Breathlessness During a Pulmonary Rehabilitation Program
|
N/A | |
Completed |
NCT01892566 -
Using Mobile Health to Respond Early to Acute Exacerbations of COPD in HIV
|
N/A | |
Completed |
NCT04119856 -
Outgoing Lung Team - a Cross-sectorial Intervention in Patients With COPD
|
N/A | |
Completed |
NCT04485741 -
Strados System at Center of Excellence
|
||
Completed |
NCT03626519 -
Effects of Menthol on Dyspnoea in COPD Patients
|
N/A | |
Recruiting |
NCT04860375 -
Multidisciplinary Management of Severe COPD
|
N/A |