Clinical Trials Logo

Cooling clinical trials

View clinical trials related to Cooling.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT06142890 Recruiting - Aging Clinical Trials

Efficacy of Ceiling Fans for Mitigating Thermal Strain During Bed Rest in Older Adults During Heat Waves

Start date: December 5, 2023
Phase: N/A
Study type: Interventional

With the increasing regularity and intensity of hot weather and heat waves, there is an urgent need to develop heat-alleviation strategies able to provide targeted protection for heat-vulnerable older adults. While air-conditioning provides the most effective protection from extreme heat, it is inaccessible for many individuals. Air-conditioning is also energy intensive, which can strain the electrical grid and, depending on the source of electricity generation, contribute to green house gas emissions. For these reasons, recent guidance has recommended the use of electric fans as a sustainable cooling alternative. While fans may increase sweat evaporation and heat loss in healthy, young adults, evidence supporting their use in older adults is scarce. Further, studies show that when environmental temperature exceeds skin temperature, fans are not effective and can even exacerbate hyperthermia in older adults. While older adults only account for ~13% of the population, they account for ~40% off all hospitalizations. In the context of sustainable cooling interventions, this is of particular importance given that many hospitals and long-term care homes do not have air-conditioning and rely on ceiling fans to enhance sweat evaporation while participants are bed-resting. While recent biophysical modelling has suggested that pedestal fans likely provide a clinically meaningful cooling effect (proposed to be ≥0.3°C) in temperatures below ~34°C in older adults, the efficacy of ceiling fans in mitigating heat strain in these conditions is currently unknown. To address these knowledge gaps, this randomized crossover trial will evaluate body core temperature, cardiovascular strain, orthostatic intolerance, dehydration, and thermal comfort in adults aged 65-85 years exposed for 8-hours to conditions experienced during indoor overheating occurring during a heat wave in a temperate continental climate (31°C, 45% relative humidity). Each participant will complete two randomized exposures that will differ only in the airflow generated by a ceiling fan: no airflow (control) or standard airflow. Participants will remain in a supine position for the duration of the 8-hour exposure period, except for during hour 7 when they will complete a series of cardiovascular autonomic response tests.