View clinical trials related to Contusions.
Filter by:Microbiome studies may be highlighted as crucial in the development of sleep disorder for TBI patients. The microbiota-gut-brain connection may further provide an opportunity for microbiota manipulation to treat the TBI patients with sleep disorders.This study is to investigate whether exist the relationship between sleep disorder and circadian rhythm of patients with TBI or not and focus the study on the potential of the host-microbiota interaction in regulating sleep disorder.
In the transarterial technique for axillary brachial plexus block, the axillary artery is intentionally punctured to indicate placement of the needle within the neurovascular sheath; local anesthetic is then injected deep and superficial to the axillary artery.
Traumatic brain injury (TBI) is the most common cause of acquired disability in youth and a source of significant morbidity and family burden. Novel behavior problems are among the most common and problematic consequences, yet many youth fail to receive needed psychological services due to lack of identification and access. Linking youth with TBI to effective treatments could improve functional outcomes, reduce family burden, and increase treatment satisfaction. The investigators overarching aim is to compare the effectiveness, feasibility, and acceptability of three formats of family problem solving therapy (F-PST) for improving functional outcomes of complicated mild to severe adolescent TBI: therapist-guided, face-to-face; therapist-guided online; and self-guided, online F-PST.
This study will assess the analgesic efficacy of DSG 1% compared to placebo in the reduction of the pain associated with acute blunt trauma injuries.
Pulmonary contusion (PC) is a significant problem after blunt trauma that may often lead to acute respiratory distress syndrome (ARDS) and in some patients, death. Although the pathophysiology is incompletely understood, it is clear that there is a biochemical process involving changes in the inflammatory milieu after contusion which occurs in addition to simple direct mechanical injury to the lung. The relationship of severity of contusion on imaging, disturbances in the inflammatory phenotype, and outcome is unknown. This is a prospective, observational study which will evaluate the size and severity of contusion as measured on chest computed tomography (CT). Inflammatory mediators will be measured in the bronchoalveolar lavage (BAL) and in the serum of patients with pulmonary contusion to define the inflammatory nature of the post-contusion lung. The degree of abnormality within the inflammatory parameters will be correlated with lung contusion size and subsequent patient outcomes. These data will be compared to other patient groups: 1) Trauma patients without chest injury who are mechanically ventilated; 2) Uninjured patients undergoing elective surgical procedures that will require intubation and mechanical ventilation; 3) Patients in the Medical ICU who are mechanically ventilated with acute respiratory failure. The hypothesis tested within this study is resolution of lung injury is dependent upon the presence of Tregs in the alveolar space.
The goal of this study is to evaluate the sensitivity and specificity of Electrical Impedance Tomography (EIT) as a bedside diagnostic tool for lung pathologies in patients who are mechanically ventilated. In electrical impedance tomography low amplitude, low frequency current is applied on electrodes, and the resulting voltage is measured and used to computed the electrical properties of the interior of the chest as they change in time. The computed properties are used to form an image, which can then be used for monitoring and diagnosis.
Subcutaneous heparin injection is one of the most frequent nurses' clinical care. This study aimed to Identify and compare the effects of four different injection duration on pain and bruising associated with subcutaneous injection of heparin in 90 patients. Four injection methods were used for them: A: 10s injections duration B: 10s injection duration and waiting 10s before withdrawing the needle C: 15s injection duration and waiting 5s before withdrawing the needle D: 5s injection duration and waiting 15s before withdrawing the needle. Bruising was measured by a flexible millimeter ruler 48h after each injection; and pain was measured by pain visual analogue scale immediately after the injection. Data will be analyzed by SPSS.
Cerebral edema is seen heterogenous group of neurological disease states that mainly fall under the categories of metabolic, infectious, neoplasia, cerebrovascular, and traumatic brain injury disease states. Regardless of the driving force, cerebral edema is defined as the accumulation of fluid in the brain's intracellular and extracellular spaces. This occurs secondary to alterations in the complex interplay between four distinct fluid compartments within the cranium. In any human cranium; fluid is contained in the blood, the cerebrospinal fluid, interstitial fluid of the brain parenchyma, and the intracellular fluid of the neurons and glia. Fluid movement occurs normally between these compartments and depends on specific concentrations of solutes (such as sodium) and water. In brain-injured states, the normal regulation of this process is disturbed and cerebral edema can develop. Cerebral edema leads to increased intracranial pressure and mortality secondary to brain tissue compression, given the confines of the fixed-volume cranium. Additionally, secondary neuronal dysfunction or death can occur at the cellular level secondary to the disruption of ion gradients that control metabolism and function. While studies utilizing bolus dosing of hyperosmolar therapy to target signs or symptoms of increased intracranial pressure secondary to cerebral edema are numerous, there is a paucity of studies relating to continuous infusion of hyperosmolar therapy for targeted sustained hypernatremia for the prevention and treatment of cerebral edema. The investigators hypothesize that induced, sustained hypernatremia following traumatic brain injury will decrease the rate of cerebral edema formation and improve patient outcomes.
The purpose of this study is to evaluate the efficacy of DSG 1% compared with placebo applied four times a day in subjects with acute blunt soft tissue injuries/contusions of the limbs
Multicenter, randomized, double-blind trial, to evaluate the efficacy and safety Aliviador compared to Gelol in the relief of signs and symptoms in patients with contusions, sprains, trauma and muscle injury start with less than 24 hours or patients of myalgia, myofascial pain and tendinitis.