Clinical Trials Logo

Consolidation clinical trials

View clinical trials related to Consolidation.

Filter by:
  • Completed  
  • Page 1

NCT ID: NCT05963945 Completed - Pleural Effusion Clinical Trials

Multi-Reader Retrospective Study Examining Carebot AI CXR 2.0.21-v2.01 Implementation in Everyday Radiology Clinical Practice

Start date: October 18, 2022
Phase:
Study type: Observational

The primary objective is to evaluate the performance parameters of the proposed DLAD (Carebot AI CXR) in comparison to individual radiologists.

NCT ID: NCT05594485 Completed - Lung Cancer Clinical Trials

Retrospective Study of Carebot AI CXR Performance in Preclinical Practice

Start date: August 15, 2022
Phase:
Study type: Observational

The purpose of this study is to describe the design, methodology and evaluation of the preclinical test of Carebot AI CXR software, and to provide evidence that the investigated medical device meets user requirements in accordance with its intended use. Carebot AI CXR is defined as a recommendation system (classification "prediction") based on computer-aided detection. The software can be used in a preclinical deployment at a selected site before interpretation (prioritization, display of all results and heatmaps) or after interpretation (verification of findings) of CXR images, and in accordance with the manufacturer's recommendations. Given this, a retrospective study is performed to test the clinical effectiveness on existing CXRs.

NCT ID: NCT04702724 Completed - Sleep Clinical Trials

Reinstatement of Context During Sleep and Its Subsequent Effect on Memory: an fMRI Study

Start date: May 10, 2021
Phase: N/A
Study type: Interventional

Memory benefits from sleep and these benefits are putatively achieved through reactivation of the neural memory trace during sleep. Studies examining the effects of reactivation commonly focus on single, isolated items - but real-life memories never exist in a vacuum. Individual memories are bound to the context (e.g., the location, time and state of mind in which they are encoded) and this context is later reinstated to recall the details related to the memory. The question of how context participated in the process of sleep reactivation has never been directly examined. This experiment will monitor brain activity during memory encoding, sleep and finally retrieval to investigate the role context plays in sleep-related memory consolidation. Monitoring will be done using functional magnetic resonance imaging (fMRI) and electroencephalographic (EEG) recordings. Participants will go through a series of training trials, in which they will have to learn to associate several small images of items or animals with a larger image of scenes - and also learn the spatial location of these smaller images on the screen. The order of the presented images and the scenes in which they are embedded will remain constant throughout training, creating a solid, consistent temporal context in which item memories will be embedded. After training, participants will receive a 90 minute nap opportunity, during which the sounds associated with specific images will be unobtrusively presented. I expect memory for the spatial location of the cued images to improve. Importantly, I hypothesize that this effect will carry over to other items associated with the same scene (i.e., embedded in the same context) and that the temporal order in which the images were learned will govern this effect. I will use the EEG and fMRI data to estimate, on the basis of neuronal pattern activity, the level of contextual reinstatement and will build on these data, in combination with the behavioral results, to model the level of contextual involvement during sleep. These results could pave the way towards a unified theory of sleep's role in memory consolidation, which would encompass computational models of context and memory as well.

NCT ID: NCT04702152 Completed - Sleep Clinical Trials

The Effects of Direct Context Reactivation During Sleep on Memory

Start date: September 15, 2020
Phase: N/A
Study type: Interventional

The context in which memories are encoded is a major factor influencing how memories are organized. Individual memories are bound to the context (e.g., the location, time and state of mind in which they are encoded) and this context is later reinstated to recall the details related to the memory. Although the role of context has been explored with regard to memory encoding and retrieval, its role during sleep-related memory consolidation has not been explored. Memories are thought to be reactivated during sleep, subsequently benefitting from the process. This study will use encephalography (EEG) in humans to consider several competing hypotheses regarding context's role in sleep reactivation, thereby enhancing the current understanding of how reactivation of memory over sleep relates to models of context and memory. Participants will learn to associate pictures of scenes to different sounds and to smaller images of items and animals, and then learn the spatial locations of these smaller images on a grid. Crucially, for half of these scenes, the sounds themselves will then also be linked directly to some of images during training. The associated sounds will then be unobtrusively presented during sleep, in a manner that has been shown to improve associated memories. The subsequent memory benefits will reveal whether (1) all images associated with the cued scene will benefit from cuing, demonstrating a context-reactivation effect; (2) only the images directly associated with presented sound will benefit from the cuing, demonstrating a item-reactivation effect; or (3) some composite of these two models. Regardless of which hypothesis is correct, the results will expand our current understanding regarding the role context plays in sleep consolidation.

NCT ID: NCT04552912 Completed - Physical Activity Clinical Trials

Physical Activity to Improve Patient Reported Outcomes for Adults With Acute Leukemia

Build Stamina
Start date: January 15, 2021
Phase: N/A
Study type: Interventional

The purpose of this study is to test the efficacy of an evidence-based tailored physical activity program adapted for adults with acute leukemia. Implementation-related process evaluation of the physical activity program will also be assessed.