Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT03891160
Other study ID # AAAR7877
Secondary ID 1K23HL165083-01
Status Recruiting
Phase N/A
First received
Last updated
Start date January 22, 2020
Est. completion date July 31, 2026

Study information

Verified date June 2024
Source Columbia University
Contact Kanwal Farooqi, MD
Phone 212-305-8509
Email kf2549@cumc.columbia.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The purpose of this research study is to look at the advantages of using a 3D printed heart model for surgical planning in children who have been diagnosed with Congenital Heart Disease (CHD) and clinical heart failure and will undergo a ventricular assist device (VAD) placement. The investigators want to study the correlation of having a 3D printed model with improvement in patient outcomes and compare those with patients who have had a VAD placement without a 3D model.


Description:

Congenital heart disease (CHD) remains the most common type of major congenital malformation and the leading cause of mortality from birth defects [1-4]. Advances in effective treatment for these lesions have significantly extended the lifespan of affected patients, especially for the most complex subtypes of disease. However, these patients are at higher risk of heart failure (HF) secondary to longer life expectancy. This includes patients with a systemic right ventricle and a single ventricle circulation palliated by a Fontan procedure [5, 6]. HF has been documented in up to 30% of patients with a systemic right ventricle and 40% of patients who have had a Fontan procedure [7]. Ventricular assist devices (VAD) are implanted in patients with HF to improve cardiac output and prolong life. VAD remains underutilized in patients with CHD and HF in part due to the highly variable anatomy in this population. This is true despite outcomes having been shown to be the same for VAD placement in patients with and without CHD [8-10]. In the absence of VAD placement, however, wait list mortality for patients with CHD is higher than for those patients without CHD [11, 12]. Advances in imaging techniques have allowed early diagnosis of CHD as well as anatomic assessment prior to surgical procedures. Given the significant yet often subtle anatomic differences between CHD patients, it is a substantial challenge to thoroughly depict all of the components of a complex patient's cardiac anatomy in a two-dimensional imaging dataset. An innovative technology that is being used with more enthusiasm in the medical field, is three-dimensional (3D) printing. The investigator and the research team have previously reported on the best technique that should be used to create 3D printed cardiac models from MRI and the subtypes of complex CHD's for which 3D printing should be utilized [13-16]. 3D printing allows creation of patient specific physical anatomic models from a patient's own imaging data. These models provide a physical guide to patient-specific anatomic features that often make VAD and cannula placement challenging in patients with CHD [17]. Factors such as complex cardiac anatomic malformations, heavy trabeculations or a severely dilated ventricle can distort the usual anatomic landmarks used to identify the best position for cannula placement. The primary goal is to establish the utility of this advanced imaging technique, which provides a much more comprehensive understanding of complex congenital cardiac anatomy. The investigator hypothesizes that 3D printed models will allow more informed preoperative planning with a clearer understanding of the best site for inflow and outflow cannula and VAD placement leading to better surgical preparedness, less operating room time and improved patient outcomes. AIM 1: To assess if a 3D printed cardiac model improves perceived visualization of VAD and cannula placement sites in CHD-HF patients as compared to 2D imaging. The study will prospectively enroll CHD-HF patients at multiple centers and randomize to Group A (3D printed models will be used for pre-VAD planning) or Group B (no model-controls). For both Groups, all of the cardiothoracic surgeons at the participating center will complete a questionnaire after reviewing 2D imaging data. For Group A, a survey will also be administered after reviewing a patient specific 3D model. The primary outcome measure will be better perceived visualization of cannula and VAD sites. The investigator hypothesizes that the 3D model will more clearly demonstrate sites of cannula and VAD placement as compared to 2D imaging. AIM 2: To determine if perioperative factors and outcomes improve in CHD-HF patients with use of a 3D printed model versus traditional imaging in VAD placement planning. Clinical characteristics will be collected at time of enrollment including primary diagnosis and indication for VAD. After VAD placement, information regarding the intraoperative and postoperative course will be collected including surgical cardiopulmonary bypass time (CPB) and need for cannula repositioning. Longer CPB increases morbidity and mortality and is associated with intensive care readmission in patients after LVAD placement [18-20]. The primary measures of improvement will be CPB. The investigator hypothesizes that the improved preoperative planning using 3D models will lead to a decrease in CPB time. The skill with which patient specific CHD anatomy for pre-procedural planning is assessed must be improved, especially for the most complex patients. To confirm the clinical benefit of 3D printed models in pre-surgical planning and justify their use in routine care, multicenter clinical trials must be conducted. As an expert in the field of 3D imaging in cardiac disease, the investigator is well poised to lead this body of research. The goal is to become well versed in conducting high quality multicenter studies and to become facile in survey tool design through this K23 proposal. The investigator will then design a prospective multicenter study for an independent R01 proposal focused on assessing the utility of 3D models in pre-procedural planning for all complex congenital heart diseases. Investigating and reporting on these findings will result in a paradigm shift in what one considers "standard of care" for advanced imaging offered to our most complex CHD patients.


Recruitment information / eligibility

Status Recruiting
Enrollment 44
Est. completion date July 31, 2026
Est. primary completion date July 31, 2026
Accepts healthy volunteers No
Gender All
Age group N/A and older
Eligibility Inclusion Criteria: - Patients who weigh over 3 kilograms with CHD HF who are candidates for MCS will be prospectively identified at the participating centers. Exclusion Criteria: - Any CHD-HF patient unable to tolerate a CMR or cardiac CT will be excluded.

Study Design


Intervention

Other:
3D model of heart
To assess if a 3D printed cardiac model improves visualization of VAD and cannula placement sites in CHD-HF patients as compared to 2D imaging. The investigators will prospectively enroll CHD-HF patients at multiple centers and randomize to group A (3D printed models will be used for pre-VAD planning) or Group B (controls).

Locations

Country Name City State
Colombia LaCardio Bogotá
United States Children's Healthcare of Atlanta Atlanta Georgia
United States Johns Hopkins Baltimore Maryland
United States Montefiore Medical Center Bronx New York
United States University of Virginia Charlottesville Virginia
United States Lurie Children's Hospital Chicago Illinois
United States Cleveland Clinic Cleveland Ohio
United States Duke University Durham North Carolina
United States University of Florida Gainesville Florida
United States University of Iowa Iowa City Iowa
United States Columbia University New York New York
United States Weill Cornell New York New York
United States Washington University Saint Louis Missouri
United States Seattle childrens Seattle Washington
United States Children's National Hospital Washington District of Columbia

Sponsors (2)

Lead Sponsor Collaborator
Columbia University National Heart, Lung, and Blood Institute (NHLBI)

Countries where clinical trial is conducted

United States,  Colombia, 

Outcome

Type Measure Description Time frame Safety issue
Primary A change in the clarity of cannula and VAD site demonstration Change in survey responses regarding clarity of VAD or cannula site placement. 30 day
Primary Improvement in cardiopulmonary bypass time Detecting a change in cardiopulmonary bypass time in patients in the group that used the 3D models for pre-VAD planning. 5 year
See also
  Status Clinical Trial Phase
Recruiting NCT05654272 - Development of CIRC Technologies
Recruiting NCT04992793 - Paediatric Brain Injury Following Cardiac Interventions
Recruiting NCT05213598 - Fontan Associated Liver Disease and the Evaluation of Biomarkers for Disease Severity Assessment
Completed NCT04136379 - Comparison of Home and Standard Clinic Monitoring of INR in Patients With CHD
Completed NCT04814888 - 3D Airway Model for Pediatric Patients
Recruiting NCT04920643 - High-exchange ULTrafiltration to Enhance Recovery After Pediatric Cardiac Surgery N/A
Completed NCT05934578 - Lymphatic Function in Patients With Fontan Circulation: Effect of Physical Training N/A
Recruiting NCT06041685 - Effect of Local Warming for Arterial Catheterization in Pediatric Anesthesia N/A
Recruiting NCT05902013 - Video Laryngoscopy Versus Direct Laryngoscopy for Nasotracheal Intubation N/A
Not yet recruiting NCT05687292 - Application of a Clinical Decision Support System to Reduce Mechanical Ventilation Duration After Cardiac Surgery
Not yet recruiting NCT05524324 - Cardiac Resynchronization Therapy in Adult Congenital Heart Disease With Systemic Right Ventricle: RIGHT-CRT N/A
Completed NCT02746029 - Cardiac Murmurs in Children: Predictive Value of Cardiac Markers
Completed NCT02537392 - Multi-micronutrient Supplementation During Peri-conception and Congenital Heart Disease N/A
Completed NCT03119090 - Fontan Imaging Biomarkers (FIB) Study
Recruiting NCT02258724 - Swiss National Registry of Grown up Congenital Heart Disease Patients
Terminated NCT02046135 - Sodium Bicarbonate to Prevent Acute Kidney Injury in Children Undergoing Cardiac Surgery Phase 2
Completed NCT01966237 - Milrinone Pharmacokinetics and Acute Kidney Injury
Recruiting NCT01184404 - Bosentan Improves Clinical Outcome of Adults With Congenital Heart Disease or Mitral Valve Lesions Who Undergo CArdiac Surgery N/A
Completed NCT01548950 - Drug Therapy and Surgery in Congenital Heart Disease With Pulmonary Hypertension N/A
Completed NCT01178710 - Effect of Simvastatin on Cardiac Function N/A