Congenital Heart Disease Clinical Trial
— PBSFOfficial title:
Protecting Brains and Saving Futures - the PBSF Protocol: a Prospective Multicenter and Observational Study on the Use of Telemedicine for Neurocritical Care in High-risk Newborns in Brazil.
Background: Multiple neonatal disorders are associated with risks of neurological injury. Thus, management of these infants should involve a coordinated approach to permit early diagnosis with improved clinical care. Such initiative involves the use of standardized protocols, continuous and specialized brain monitoring with electroencephalography (EEG), amplitude integrated EEG (aEEG) and Near Infrared Spectroscopy (NIRS), neuroimaging and training. Brazil is a very large country with disparities in health care assessment; some neonatal intensive care units (NICUs) are not well structured and trained to provide adequate neurocritical care. However, the development and implementation of these neurocritical care units requires high expertise and significant investment of time, manpower and equipment. In order to reduce the existing gap, a unique advanced telemedicine model of neurocritical care called Protecting Brains and Saving Futures (PBSF) protocol was developed and implemented in some Brazilian NICUs. Methods: A prospective observational cohort study will be conducted in 20 Brazilian NICUs that have adopted the PBSF protocol. All infants receiving the protocol during January 2021 to December 2023 will be eligible. Ethical approval will be obtained from the participating institutions. The primary objective is to describe the use of the PBSF protocol and clinical outcomes, by center and over a 3 years period. The use of the PBSF protocol will be measured by quantification of neuromonitoring, neuroimaging exams and sub-specialties consultation. Clinical outcomes of interest after the protocol implementation are length of hospital stay, detection of EEG seizures during hospitalization, use of anticonvulsants, inotropes, and fluid resuscitation, death before hospital discharge, and referral of patients to high-risk infant follow-up. These data will be also compared between infants with primarily neurologic and primarily clinical diagnosis. Discussion: The implementation of the PBSF protocol may provide adequate remote neurocritical care in high-risk infants with optimization of clinical management and improved outcomes. Data from this large, prospective, multicenter study are essential to determine whether neonatal neurocritical units can improve outcomes. Finally, it may offer the necessary framework for larger scale implementation and help in the development of studies of remote neuromonitoring.
Status | Not yet recruiting |
Enrollment | 2268 |
Est. completion date | December 31, 2023 |
Est. primary completion date | December 31, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | N/A to 3 Months |
Eligibility | - Inclusion criteria: In this cohort study, all the infants admitted to any of the 20 NICUs from birth up to three months of life and receiving the PBSF protocol are eligible. Following are the indications for use of the PBSF protocol in the participating centers 1. Extreme prematurity 2. Peri-intraventricular Hemorrhage 3. Hypoxic-ischemic encephalopathy (mild, moderate or severe) 4. Congenital heart disease 5. Neonatal stroke 6. Congenital infections 7. Nosocomial infections 8. Inborn errors of metabolism 9. Severe hemodynamic/ventilatory instability 10. Seizures 11. Brain malformations 12. CNS infection 13. ECMO - Exclusion criteria: Patients with genetic syndromes or malformation incompatible with life, or older than three months old will be excluded. |
Country | Name | City | State |
---|---|---|---|
Brazil | Irmandade da Santa Casa de Misericórdia de São Paulo | São Paulo | SP |
Brazil | Protecting Brains and Saving Futures - PBSF | São Paulo |
Lead Sponsor | Collaborator |
---|---|
Protecting Brains Saving Futures |
Brazil,
Abend NS, Wusthoff CJ, Goldberg EM, Dlugos DJ. Electrographic seizures and status epilepticus in critically ill children and neonates with encephalopathy. Lancet Neurol. 2013 Dec;12(12):1170-9. doi: 10.1016/S1474-4422(13)70246-1. Review. — View Citation
Alderliesten T, De Vis JB, Lemmers PM, Hendrikse J, Groenendaal F, van Bel F, Benders MJ, Petersen ET. Brain oxygen saturation assessment in neonates using T(2)-prepared blood imaging of oxygen saturation and near-infrared spectroscopy. J Cereb Blood Flow Metab. 2017 Mar;37(3):902-913. doi: 10.1177/0271678X16647737. Epub 2016 Jul 20. — View Citation
Ancora G, Maranella E, Grandi S, Sbravati F, Coccolini E, Savini S, Faldella G. Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants. A combined brain amplitude integrated electroencephalography and near infrared spectroscopy study. Brain Dev. 2013 Jan;35(1):26-31. doi: 10.1016/j.braindev.2011.09.008. Epub 2011 Nov 13. — View Citation
Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, Kapellou O, Levene M, Marlow N, Porter E, Thoresen M, Whitelaw A, Brocklehurst P; TOBY Study Group. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009 Oct 1;361(14):1349-58. doi: 10.1056/NEJMoa0900854. Erratum in: N Engl J Med. 2010 Mar 18;362(11):1056. — View Citation
Blencowe H, Lee AC, Cousens S, Bahalim A, Narwal R, Zhong N, Chou D, Say L, Modi N, Katz J, Vos T, Marlow N, Lawn JE. Preterm birth-associated neurodevelopmental impairment estimates at regional and global levels for 2010. Pediatr Res. 2013 Dec;74 Suppl 1:17-34. doi: 10.1038/pr.2013.204. Review. — View Citation
Bosi G, Garani G, Scorrano M, Calzolari E; IMER Working Party. Temporal variability in birth prevalence of congenital heart defects as recorded by a general birth defects registry. J Pediatr. 2003 Jun;142(6):690-8. Erratum in: J Pediatr. 2003 Oct;143(4):531. — View Citation
Burke BL Jr, Hall RW; SECTION ON TELEHEALTH CARE. Telemedicine: Pediatric Applications. Pediatrics. 2015 Jul;136(1):e293-308. doi: 10.1542/peds.2015-1517. Review. — View Citation
Burnett AC, Cheong JLY, Doyle LW. Biological and Social Influences on the Neurodevelopmental Outcomes of Preterm Infants. Clin Perinatol. 2018 Sep;45(3):485-500. doi: 10.1016/j.clp.2018.05.005. Review. — View Citation
Chandrasekaran M, Chaban B, Montaldo P, Thayyil S. Predictive value of amplitude-integrated EEG (aEEG) after rescue hypothermic neuroprotection for hypoxic ischemic encephalopathy: a meta-analysis. J Perinatol. 2017 Jun;37(6):684-689. doi: 10.1038/jp.2017.14. Epub 2017 Mar 2. Review. — View Citation
Cheong JL, Doyle LW, Burnett AC, Lee KJ, Walsh JM, Potter CR, Treyvaud K, Thompson DK, Olsen JE, Anderson PJ, Spittle AJ. Association Between Moderate and Late Preterm Birth and Neurodevelopment and Social-Emotional Development at Age 2 Years. JAMA Pediatr. 2017 Apr 3;171(4):e164805. doi: 10.1001/jamapediatrics.2016.4805. Epub 2017 Apr 3. — View Citation
Chock VY, Rose LA, Mante JV, Punn R. Near-infrared spectroscopy for detection of a significant patent ductus arteriosus. Pediatr Res. 2016 Nov;80(5):675-680. doi: 10.1038/pr.2016.148. Epub 2016 Sep 7. — View Citation
Clair MP, Rambaud J, Flahault A, Guedj R, Guilbert J, Guellec I, Durandy A, Demoulin M, Jean S, Mitanchez D, Chalard F, Sileo C, Carbajal R, Renolleau S, Léger PL. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation. PLoS One. 2017 Mar 9;12(3):e0172991. doi: 10.1371/journal.pone.0172991. eCollection 2017. — View Citation
Colasacco C, Worthen M, Peterson B, Lamberti J, Spear R. Near-infrared spectroscopy monitoring to predict postoperative renal insufficiency following repair of congenital heart disease. World J Pediatr Congenit Heart Surg. 2011 Oct 1;2(4):536-40. doi: 10.1177/2150135111411932. — View Citation
de Vries LS, Jongmans MJ. Long-term outcome after neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2010 May;95(3):F220-4. doi: 10.1136/adc.2008.148205. Review. — View Citation
Del Río R, Ochoa C, Alarcon A, Arnáez J, Blanco D, García-Alix A. Amplitude Integrated Electroencephalogram as a Prognostic Tool in Neonates with Hypoxic-Ischemic Encephalopathy: A Systematic Review. PLoS One. 2016 Nov 1;11(11):e0165744. doi: 10.1371/journal.pone.0165744. eCollection 2016. Review. — View Citation
Dimitropoulos A, McQuillen PS, Sethi V, Moosa A, Chau V, Xu D, Brant R, Azakie A, Campbell A, Barkovich AJ, Poskitt KJ, Miller SP. Brain injury and development in newborns with critical congenital heart disease. Neurology. 2013 Jul 16;81(3):241-8. doi: 10.1212/WNL.0b013e31829bfdcf. Epub 2013 Jun 14. — View Citation
Dodge-Khatami J, Gottschalk U, Eulenburg C, Wendt U, Schnegg C, Rebel M, Reichenspurner H, Dodge-Khatami A. Prognostic value of perioperative near-infrared spectroscopy during neonatal and infant congenital heart surgery for adverse in-hospital clinical events. World J Pediatr Congenit Heart Surg. 2012 Apr 1;3(2):221-8. doi: 10.1177/2150135111426298. — View Citation
Ferriero DM. Neonatal brain injury. N Engl J Med. 2004 Nov 4;351(19):1985-95. Review. — View Citation
Frenkel N, Friger M, Meledin I, Berger I, Marks K, Bassan H, Shany E. Neonatal seizure recognition--comparative study of continuous-amplitude integrated EEG versus short conventional EEG recordings. Clin Neurophysiol. 2011 Jun;122(6):1091-7. doi: 10.1016/j.clinph.2010.09.028. Epub 2011 Jan 7. — View Citation
Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, Polin RA, Robertson CM, Thoresen M, Whitelaw A, Gunn AJ. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet. 2005 Feb 19-25;365(9460):663-70. — View Citation
Gunn JK, Beca J, Hunt RW, Olischar M, Shekerdemian LS. Perioperative amplitude-integrated EEG and neurodevelopment in infants with congenital heart disease. Intensive Care Med. 2012 Sep;38(9):1539-47. doi: 10.1007/s00134-012-2608-y. Epub 2012 Jun 1. — View Citation
Gunn JK, Beca J, Penny DJ, Horton SB, d'Udekem YA, Brizard CP, Finucane K, Olischar M, Hunt RW, Shekerdemian LS. Amplitude-integrated electroencephalography and brain injury in infants undergoing Norwood-type operations. Ann Thorac Surg. 2012 Jan;93(1):170-6. doi: 10.1016/j.athoracsur.2011.08.014. Epub 2011 Nov 9. — View Citation
Hall RW, Hall-Barrow J, Garcia-Rill E. Neonatal regionalization through telemedicine using a community-based research and education core facility. Ethn Dis. 2010 Winter;20(1 Suppl 1):S1-136-40. — View Citation
Hanson SJ, Berens RJ, Havens PL, Kim MK, Hoffman GM. Effect of volume resuscitation on regional perfusion in dehydrated pediatric patients as measured by two-site near-infrared spectroscopy. Pediatr Emerg Care. 2009 Mar;25(3):150-3. doi: 10.1097/PEC.0b013e31819a7f60. — View Citation
Helderman JB, Welch CD, Leng X, O'Shea TM. Sepsis-associated electroencephalographic changes in extremely low gestational age neonates. Early Hum Dev. 2010 Aug;86(8):509-13. doi: 10.1016/j.earlhumdev.2010.06.006. Epub 2010 Aug 12. — View Citation
Hellström-Westas L, Rosén I, de Vries LS, Greisen G. Amplitude-integrated EEG Classification and Interpretation in Preterm and Term Infants. NeoReviews. 2006;7(2):e76-87.
Hellström-Westas L, Rosén I, Svenningsen NW. Cerebral function monitoring during the first week of life in extremely small low birthweight (ESLBW) infants. Neuropediatrics. 1991 Feb;22(1):27-32. — View Citation
Hellström-Westas L, Rosén I, Svenningsen NW. Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed. 1995 Jan;72(1):F34-8. — View Citation
Hellström-Westas L, Rosén I. Continuous brain-function monitoring: state of the art in clinical practice. Semin Fetal Neonatal Med. 2006 Dec;11(6):503-11. Epub 2006 Oct 24. Review. — View Citation
Hoffman GM, Ghanayem NS, Scott JP, Tweddell JS, Mitchell ME, Mussatto KA. Postoperative Cerebral and Somatic Near-Infrared Spectroscopy Saturations and Outcome in Hypoplastic Left Heart Syndrome. Ann Thorac Surg. 2017 May;103(5):1527-1535. doi: 10.1016/j.athoracsur.2016.09.100. Epub 2016 Dec 21. — View Citation
Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002 Jun 19;39(12):1890-900. Review. — View Citation
Hyttel-Sorensen S, Pellicer A, Alderliesten T, Austin T, van Bel F, Benders M, Claris O, Dempsey E, Franz AR, Fumagalli M, Gluud C, Grevstad B, Hagmann C, Lemmers P, van Oeveren W, Pichler G, Plomgaard AM, Riera J, Sanchez L, Winkel P, Wolf M, Greisen G. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015 Jan 5;350:g7635. doi: 10.1136/bmj.g7635. — View Citation
Jain SV, Pagano L, Gillam-Krakauer M, Slaughter JC, Pruthi S, Engelhardt B. Cerebral regional oxygen saturation trends in infants with hypoxic-ischemic encephalopathy. Early Hum Dev. 2017 Oct;113:55-61. doi: 10.1016/j.earlhumdev.2017.07.008. Epub 2017 Aug 1. — View Citation
Johnson BA, Hoffman GM, Tweddell JS, Cava JR, Basir M, Mitchell ME, Scanlon MC, Mussatto KA, Ghanayem NS. Near-infrared spectroscopy in neonates before palliation of hypoplastic left heart syndrome. Ann Thorac Surg. 2009 Feb;87(2):571-7; discussion 577-9. doi: 10.1016/j.athoracsur.2008.10.043. — View Citation
Joseph RM, O'Shea TM, Allred EN, Heeren T, Hirtz D, Jara H, Leviton A, Kuban KC; ELGAN Study Investigators. Neurocognitive and Academic Outcomes at Age 10 Years of Extremely Preterm Newborns. Pediatrics. 2016 Apr;137(4). pii: e20154343. doi: 10.1542/peds.2015-4343. Epub 2016 Mar 22. — View Citation
Kahn JM, Le TQ, Barnato AE, Hravnak M, Kuza CC, Pike F, Angus DC. ICU Telemedicine and Critical Care Mortality: A National Effectiveness Study. Med Care. 2016 Mar;54(3):319-25. doi: 10.1097/MLR.0000000000000485. — View Citation
Klebermass K, Olischar M, Waldhoer T, Fuiko R, Pollak A, Weninger M. Amplitude-integrated EEG pattern predicts further outcome in preterm infants. Pediatr Res. 2011 Jul;70(1):102-8. doi: 10.1203/PDR.0b013e31821ba200. — View Citation
Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010 Jun;86(6):329-38. doi: 10.1016/j.earlhumdev.2010.05.010. Epub 2010 Jun 16. — View Citation
Latal B, Wohlrab G, Brotschi B, Beck I, Knirsch W, Bernet V. Postoperative Amplitude-Integrated Electroencephalography Predicts Four-Year Neurodevelopmental Outcome in Children with Complex Congenital Heart Disease. J Pediatr. 2016 Nov;178:55-60.e1. doi: 10.1016/j.jpeds.2016.06.050. Epub 2016 Jul 22. — View Citation
Lawn JE, Cousens S, Zupan J; Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: when? Where? Why? Lancet. 2005 Mar 5-11;365(9462):891-900. — View Citation
Lawn JE, Wilczynska-Ketende K, Cousens SN. Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol. 2006 Jun;35(3):706-18. Epub 2006 Mar 23. Review. — View Citation
Lemmers PM, Toet MC, van Bel F. Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics. 2008 Jan;121(1):142-7. doi: 10.1542/peds.2007-0925. — View Citation
Lemmers PM, Zwanenburg RJ, Benders MJ, de Vries LS, Groenendaal F, van Bel F, Toet MC. Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr Res. 2013 Aug;74(2):180-5. doi: 10.1038/pr.2013.84. Epub 2013 May 31. — View Citation
Limperopoulos C, Majnemer A, Shevell MI, Rosenblatt B, Rohlicek C, Tchervenkov C. Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics. 1999 Feb;103(2):402-8. — View Citation
Maldonado JM, Marques AB, Cruz A. Telemedicine: challenges to dissemination in Brazil. Cad Saude Publica. 2016 Nov 3;32Suppl 2(Suppl 2):e00155615. doi: 10.1590/0102-311X00155615. Review. English, Portuguese. — View Citation
Marino BS, Lipkin PH, Newburger JW, Peacock G, Gerdes M, Gaynor JW, Mussatto KA, Uzark K, Goldberg CS, Johnson WH Jr, Li J, Smith SE, Bellinger DC, Mahle WT; American Heart Association Congenital Heart Defects Committee, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, and Stroke Council. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012 Aug 28;126(9):1143-72. Epub 2012 Jul 30. — View Citation
Marlow N, Rose AS, Rands CE, Draper ES. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2005 Sep;90(5):F380-7. — View Citation
Mastrangelo M, Fiocchi I, Fontana P, Gorgone G, Lista G, Belcastro V. Acute neonatal encephalopathy and seizures recurrence: a combined aEEG/EEG study. Seizure. 2013 Nov;22(9):703-7. doi: 10.1016/j.seizure.2013.05.006. Epub 2013 May 29. — View Citation
McConnochie K, Wood N, Herendeen N, ten Hoopen C, Denk L, Neuderfer J. Integrating telemedicine in urban pediatric primary care: provider perspectives and performance. Telemed J E Health. 2010 Apr;16(3):280-8. doi: 10.1089/tmj.2009.0112. — View Citation
Murray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008 May;93(3):F187-91. Epub 2007 Jul 11. — View Citation
Olischar M, Shany E, Aygün C, Azzopardi D, Hunt RW, Toet MC, Hamosh A, de Vries LS, Hellström-Westas L, Theda C. Amplitude-integrated electroencephalography in newborns with inborn errors of metabolism. Neonatology. 2012;102(3):203-11. Epub 2012 Jul 12. — View Citation
Pauliah SS, Shankaran S, Wade A, Cady EB, Thayyil S. Therapeutic hypothermia for neonatal encephalopathy in low- and middle-income countries: a systematic review and meta-analysis. PLoS One. 2013;8(3):e58834. doi: 10.1371/journal.pone.0058834. Epub 2013 Mar 19. Review. — View Citation
Payne ET, Zhao XY, Frndova H, McBain K, Sharma R, Hutchison JS, Hahn CD. Seizure burden is independently associated with short term outcome in critically ill children. Brain. 2014 May;137(Pt 5):1429-38. doi: 10.1093/brain/awu042. Epub 2014 Mar 4. — View Citation
Pichler G, Höller N, Baik-Schneditz N, Schwaberger B, Mileder L, Stadler J, Avian A, Pansy J, Urlesberger B. Avoiding Arterial Hypotension in Preterm Neonates (AHIP)-A Single Center Randomised Controlled Study Investigating Simultaneous Near Infrared Spectroscopy Measurements of Cerebral and Peripheral Regional Tissue Oxygenation and Dedicated Interventions. Front Pediatr. 2018 Feb 1;6:15. doi: 10.3389/fped.2018.00015. eCollection 2018. — View Citation
Prempunpong C, Chalak LF, Garfinkle J, Shah B, Kalra V, Rollins N, Boyle R, Nguyen KA, Mir I, Pappas A, Montaldo P, Thayyil S, Sánchez PJ, Shankaran S, Laptook AR, Sant'Anna G. Prospective research on infants with mild encephalopathy: the PRIME study. J Perinatol. 2018 Jan;38(1):80-85. doi: 10.1038/jp.2017.164. Epub 2017 Nov 2. — View Citation
Rakshasbhuvankar A, Paul S, Nagarajan L, Ghosh S, Rao S. Amplitude-integrated EEG for detection of neonatal seizures: a systematic review. Seizure. 2015 Dec;33:90-8. doi: 10.1016/j.seizure.2015.09.014. Epub 2015 Sep 26. Review. — View Citation
Robertson CMT. Long-term follow-up of term infants with perinatal asphyxia. In: Stevenson DK, Benitz WE, Sunshine P. Fetal and neonatal brain injury. 3. Ed. New York: Cambridge University; 2003. p.829-58.
Sarkar S, Barks JD, Donn SM. Should amplitude-integrated electroencephalography be used to identify infants suitable for hypothermic neuroprotection? J Perinatol. 2008 Feb;28(2):117-22. Epub 2007 Nov 15. — View Citation
Shah DK, Mackay MT, Lavery S, Watson S, Harvey AS, Zempel J, Mathur A, Inder TE. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008 Jun;121(6):1146-54. doi: 10.1542/peds.2007-1839. — View Citation
Shah DK, Zempel J, Barton T, Lukas K, Inder TE. Electrographic seizures in preterm infants during the first week of life are associated with cerebral injury. Pediatr Res. 2010 Jan;67(1):102-6. doi: 10.1203/PDR.0b013e3181bf5914. — View Citation
Shah NA, Wusthoff CJ. How to use: amplitude-integrated EEG (aEEG). Arch Dis Child Educ Pract Ed. 2015 Apr;100(2):75-81. doi: 10.1136/archdischild-2013-305676. Epub 2014 Jul 17. Review. — View Citation
Shankaran S, Woldt E, Koepke T, Bedard MP, Nandyal R. Acute neonatal morbidity and long-term central nervous system sequelae of perinatal asphyxia in term infants. Early Hum Dev. 1991 May;25(2):135-48. — View Citation
Simbruner G, Mittal RA, Rohlmann F, Muche R; neo.nEURO.network Trial Participants. Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics. 2010 Oct;126(4):e771-8. doi: 10.1542/peds.2009-2441. Epub 2010 Sep 20. — View Citation
Skranes JH, Løhaugen G, Schumacher EM, Osredkar D, Server A, Cowan FM, Stiris T, Fugelseth D, Thoresen M. Amplitude-Integrated Electroencephalography Improves the Identification of Infants with Encephalopathy for Therapeutic Hypothermia and Predicts Neurodevelopmental Outcomes at 2 Years of Age. J Pediatr. 2017 Aug;187:34-42. doi: 10.1016/j.jpeds.2017.04.041. Epub 2017 May 23. — View Citation
Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015 Jun;20(3):164-72. doi: 10.1016/j.siny.2015.03.008. Epub 2015 Apr 29. Review. — View Citation
Soubasi V, Mitsakis K, Sarafidis K, Griva M, Nakas CT, Drossou V. Early abnormal amplitude-integrated electroencephalography (aEEG) is associated with adverse short-term outcome in premature infants. Eur J Paediatr Neurol. 2012 Nov;16(6):625-30. doi: 10.1016/j.ejpn.2012.02.008. Epub 2012 Mar 15. — View Citation
Srinivasakumar P, Zempel J, Trivedi S, Wallendorf M, Rao R, Smith B, Inder T, Mathur AM. Treating EEG Seizures in Hypoxic Ischemic Encephalopathy: A Randomized Controlled Trial. Pediatrics. 2015 Nov;136(5):e1302-9. doi: 10.1542/peds.2014-3777. Epub 2015 Oct 19. — View Citation
Tekgul H, Gauvreau K, Soul J, Murphy L, Robertson R, Stewart J, Volpe J, Bourgeois B, du Plessis AJ. The current etiologic profile and neurodevelopmental outcome of seizures in term newborn infants. Pediatrics. 2006 Apr;117(4):1270-80. — View Citation
ter Horst HJ, Mud M, Roofthooft MT, Bos AF. Amplitude integrated electroencephalographic activity in infants with congenital heart disease before surgery. Early Hum Dev. 2010 Dec;86(12):759-64. doi: 10.1016/j.earlhumdev.2010.08.028. — View Citation
Thoresen M, Hellström-Westas L, Liu X, de Vries LS. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics. 2010 Jul;126(1):e131-9. doi: 10.1542/peds.2009-2938. Epub 2010 Jun 21. — View Citation
Toso PA, González AJ, Pérez ME, Kattan J, Fabres JG, Tapia JL, González HS. Clinical utility of early amplitude integrated EEG in monitoring term newborns at risk of neurological injury. J Pediatr (Rio J). 2014 Mar-Apr;90(2):143-8. doi: 10.1016/j.jped.2013.07.004. Epub 2013 Oct 30. — View Citation
Triulzi F, Parazzini C, Righini A. Patterns of damage in the mature neonatal brain. Pediatr Radiol. 2006 Jul;36(7):608-20. Epub 2006 May 18. Review. — View Citation
Udeh C, Udeh B, Rahman N, Canfield C, Campbell J, Hata JS. Telemedicine/Virtual ICU: Where Are We and Where Are We Going? Methodist Debakey Cardiovasc J. 2018 Apr-Jun;14(2):126-133. doi: 10.14797/mdcj-14-2-126. Review. — View Citation
Underwood MA, Milstein JM, Sherman MP. Near-infrared spectroscopy as a screening tool for patent ductus arteriosus in extremely low birth weight infants. Neonatology. 2007;91(2):134-9. Epub 2006 Nov 20. — View Citation
van Bel F, Lemmers P, Naulaers G. Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology. 2008;94(4):237-44. doi: 10.1159/000151642. Epub 2008 Sep 11. Review. — View Citation
van Rooij LG, Toet MC, Osredkar D, van Huffelen AC, Groenendaal F, de Vries LS. Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed. 2005 May;90(3):F245-51. — View Citation
van Rooij LG, Toet MC, van Huffelen AC, Groenendaal F, Laan W, Zecic A, de Haan T, van Straaten IL, Vrancken S, van Wezel G, van der Sluijs J, Ter Horst H, Gavilanes D, Laroche S, Naulaers G, de Vries LS. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics. 2010 Feb;125(2):e358-66. doi: 10.1542/peds.2009-0136. Epub 2010 Jan 25. — View Citation
Variane GF, Cunha LM, Pinto P, Brandao P, Mascaretti RS, Magalhães M, Sant'Anna GM. Therapeutic Hypothermia in Brazil: A MultiProfessional National Survey. Am J Perinatol. 2019 Sep;36(11):1150-1156. doi: 10.1055/s-0038-1676052. Epub 2018 Dec 15. — View Citation
Variane GFT, Chock VY, Netto A, Pietrobom RFR, Van Meurs KP. Simultaneous Near-Infrared Spectroscopy (NIRS) and Amplitude-Integrated Electroencephalography (aEEG): Dual Use of Brain Monitoring Techniques Improves Our Understanding of Physiology. Front Pediatr. 2020 Jan 21;7:560. doi: 10.3389/fped.2019.00560. eCollection 2019. — View Citation
Variane GFT, Magalhães M, Gasperine R, Alves HCBR, Scoppetta TLPD, Figueredo RJG, Rodrigues FPM, Netto A, Mimica MJ, Gallacci CB. Early amplitude-integrated electroencephalography for monitoring neonates at high risk for brain injury. J Pediatr (Rio J). 2017 Sep - Oct;93(5):460-466. doi: 10.1016/j.jped.2016.12.003. Epub 2017 Feb 23. — View Citation
Vesoulis ZA, Inder TE, Woodward LJ, Buse B, Vavasseur C, Mathur AM. Early electrographic seizures, brain injury, and neurodevelopmental risk in the very preterm infant. Pediatr Res. 2014 Apr;75(4):564-9. doi: 10.1038/pr.2013.245. Epub 2013 Dec 23. — View Citation
Wikström S, Pupp IH, Rosén I, Norman E, Fellman V, Ley D, Hellström-Westas L. Early single-channel aEEG/EEG predicts outcome in very preterm infants. Acta Paediatr. 2012 Jul;101(7):719-26. doi: 10.1111/j.1651-2227.2012.02677.x. Epub 2012 Apr 24. — View Citation
* Note: There are 82 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Applicability of telemedicine model for monitored infants | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Applicability of telemedicine model for recorded remote monitoring | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Use of aEEG/EEG monitoring | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Duration of aEEG/EEG monitoring | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Number primary neurologic or medical patients with aEEG or EEG monitoring and the duration of the monitoring (hours) | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Number of primary neurologic or medical patients with NIRS monitoring and the duration of the NIRS monitoring (hours) | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Number of primary neurologic or medical patients with brain MRI, neurology consult, and neurosurgery consult. | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Number of clinical case discussions and videoconference meetings | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Length of hospital stay | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Number of electroencephalographic seizures during hospitalization | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Use and types of anticonvulsants administered | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Number and types of anticonvulsants prescribed at discharge | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Use and types of inotropes administered during NICU stay | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Use and types of fluid resuscitation administered during NICU stay | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Death before hospital discharge | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Number of patients referred to neurology or neurosurgery | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Primary | Number of patients referred to high-risk infant follow-up | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Secondary | Number of remote communications between CSI and local team | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Secondary | Number of reports issued for aEEG / EEG exams with or without the use of NIRS | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Secondary | Number of patients who performed Therapeutic Hypothermia | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Secondary | Association of pathological brain monitoring findings (aEEG/EEG and NIRS) and alterations in imaging exams including brain magnetic resonance imaging (brain MRI) and cranial ultrasonography (cranial US) performed during hospitalization | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Secondary | Association of pathological brain monitoring findings with morbi-mortality and length of hospital stay | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Secondary | Adverse effects of therapeutic hypothermia measured by cardiac arrhythmia, thrombocytopenia and coagulation disorders in general, skin lesion and pulmonary hypertension | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Secondary | Adverse effects of brain monitoring expressed by skin lesion due to electrode / sensor positioning | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period | |
Secondary | Association of pathological brain monitoring findings with evaluation of neurodevelopment by application of the Bayley test between 18 and 24 months of life | Each outcome for all sites together will be also compared for changes over time from Year 1 (2021) to Year 3 (2023). | 3 years period |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05654272 -
Development of CIRC Technologies
|
||
Recruiting |
NCT04992793 -
Paediatric Brain Injury Following Cardiac Interventions
|
||
Recruiting |
NCT05213598 -
Fontan Associated Liver Disease and the Evaluation of Biomarkers for Disease Severity Assessment
|
||
Completed |
NCT04136379 -
Comparison of Home and Standard Clinic Monitoring of INR in Patients With CHD
|
||
Completed |
NCT04814888 -
3D Airway Model for Pediatric Patients
|
||
Recruiting |
NCT04920643 -
High-exchange ULTrafiltration to Enhance Recovery After Pediatric Cardiac Surgery
|
N/A | |
Completed |
NCT05934578 -
Lymphatic Function in Patients With Fontan Circulation: Effect of Physical Training
|
N/A | |
Recruiting |
NCT06041685 -
Effect of Local Warming for Arterial Catheterization in Pediatric Anesthesia
|
N/A | |
Recruiting |
NCT05902013 -
Video Laryngoscopy Versus Direct Laryngoscopy for Nasotracheal Intubation
|
N/A | |
Not yet recruiting |
NCT05687292 -
Application of a Clinical Decision Support System to Reduce Mechanical Ventilation Duration After Cardiac Surgery
|
||
Not yet recruiting |
NCT05524324 -
Cardiac Resynchronization Therapy in Adult Congenital Heart Disease With Systemic Right Ventricle: RIGHT-CRT
|
N/A | |
Completed |
NCT02746029 -
Cardiac Murmurs in Children: Predictive Value of Cardiac Markers
|
||
Completed |
NCT02537392 -
Multi-micronutrient Supplementation During Peri-conception and Congenital Heart Disease
|
N/A | |
Completed |
NCT03119090 -
Fontan Imaging Biomarkers (FIB) Study
|
||
Recruiting |
NCT02258724 -
Swiss National Registry of Grown up Congenital Heart Disease Patients
|
||
Terminated |
NCT02046135 -
Sodium Bicarbonate to Prevent Acute Kidney Injury in Children Undergoing Cardiac Surgery
|
Phase 2 | |
Completed |
NCT01966237 -
Milrinone Pharmacokinetics and Acute Kidney Injury
|
||
Recruiting |
NCT01184404 -
Bosentan Improves Clinical Outcome of Adults With Congenital Heart Disease or Mitral Valve Lesions Who Undergo CArdiac Surgery
|
N/A | |
Completed |
NCT01548950 -
Drug Therapy and Surgery in Congenital Heart Disease With Pulmonary Hypertension
|
N/A | |
Completed |
NCT01821287 -
Nutritional Failure in Infants With Single Ventricle Congenital Heart Disease
|
N/A |