Chronic Stroke Clinical Trial
Official title:
Assessing the Usefulness of Functional Electrical Stimulation Program on Tibial Nerve for Rehabilitation of Chronic Stroke Patients
Hemiparetic gait is one of the most common consequences after stroke. This impairment has a detrimental effects on the patients lies, limiting their social participation. Previous studies have shown that there is a direct relationship between triceps surae activation and gait speed in stroke patients, that is, higher triceps surae muscle activation are correspond to greater gait speed. Then, it can be hypothesized that therapies focused in strengthening the triceps surae also improves the patient gait. It has been shown that Functional Electrical Stimulation (FES) can improve triceps surae activation when applied on healthy subjects. However, it has not been yet explored in chronic stroke patients. Therefore, the aim of this study is to assess whether a FES program over tibial nerve contributes to the rehabilitation of the gait in chronic hemiparetic stroke patients. This study present a prospective interventional design, based on non-probabilistic sampling for convenience, and comprising a total of 15 volunteers with ischemic stroke of both genders and aged between 18 and 70 years old. Volunteers will be recruited from hospitals and private rehabilitation centres, and must be currently engaged in a conventional rehabilitation program. The study will consist of twenty-four sessions, with a frequency of three sessions per week.
Status | Recruiting |
Enrollment | 15 |
Est. completion date | December 2024 |
Est. primary completion date | October 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 70 Years |
Eligibility | Inclusion Criteria: - Age ranging between 18 to 70 years. - Subjects with chronic ischemic stroke (more than 12 months of evolution) - Ability to walk 20 mts. without third-party assistance. - Hemiparesis with weakness and spasticity in the triceps surae. Exclusion Criteria: - Previous injury on paretic lower limb - Soft tissue or joint retraction limiting ankle range of motion (ROM) - Severe peripheral nervous system compromise - Electronic devices that could be altered by the use of FES (e.g. cardiac pacemaker) |
Country | Name | City | State |
---|---|---|---|
Argentina | Department of Physical Therapy, Neurofunctional Research Unit - UIN, University Center for Assistance, Teaching and Research - CUADI University of Gran Rosario | Rosario | Santa Fe |
Lead Sponsor | Collaborator |
---|---|
University of Gran Rosario |
Argentina,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in gait velocity | A 10 metres walk test will be performed to asses gait velocity. | Baseline and week 8 (after 24 sessions of intervention) | |
Secondary | Change in maximal isometric strength | To assess maximal isometric strength of dorsiflexor muscles, volunteers will performed 3 maximum repetitions of 6 seconds of isometric dorsiflexion. Force will be quantified using a load cell (maximum tension-compression = 200 Kgf, accuracy 0.1 Kgf, maximum measurement error = 0.33%; Equipo Biomédico Miotec ™, Porto Alegre, RS, Brazil), and this cell will be placed on a rigid surface and strapped to the volunteer's foot. In addition, the recorded force will be synchronised with the electromyograph to evaluate the isometric tensile strength. During this assessment, volunteers will be in supine position with the assessed lower limb extended on the stretcher. | Baseline, immediately after first session and week 8 (after 24 sessions of intervention) | |
Secondary | Change in Spasticity | The Modified Ashworth scale will be performed with volunteers in supine position, and the assessed lower limb extended on the stretcher. Passive stretching of the triceps surae will be applied at a constant speed from the position of maximum plantarflexion to the maximum possible dorsiflexion. Scores range from 0 to 4. A score of 0 indicates no resistance, and 4 indicates rigidity. | Baseline, immediately after first session and week 8 (after 24 sessions of intervention) | |
Secondary | Change in muscle activity | Surface electromyography (sEMG) will be recorded to assess activation of the tibialis anterior muscle. Four EMG channels will be acquired using commercial device (Miotec Suite ™, Biomedical Equipment, Porto Alegre, RS, Brazil). The electrodes (Ag/AgCl, with a centre-to-centre distance of 2 cm) will be align parallel to the muscle fibres of the tibialis anterior muscle, according to the recommendations of the International Society of Electrophysiology and Kinesiology (ISEK http://www.isek-online.org). A reference electrode will be placed on the lateral malleolus. Prior to electrode placement, the skin will be shaved and cleaned with cotton and 70% alcohol, in order to minimize skin impedance. The electromyographic recordings will be performed in the supine position, with the assessed leg extended and the opposite leg flexed at 70º with plantar support (measured by a goniometer). | Baseline, immediately after first session and week 8 (after 24 sessions of intervention) | |
Secondary | Change in cortical electrical activity | Electroencephalography (EEG) will be recorded during active movement of the affected lower limb using a BIOAMP electroencephalography instrument (UNER, Oro Verde, Entre Ríos, Argentina), using a cap with 15 electrodes distributed according to the international 10-20 system. The volunteer will be seated with feet fully supported on a surface. During the recordings, the volunteers will be instructed to achieve relaxation to measure the resting state, and then they will be asked to perform an active movement of the affected lower limb. | Baseline and week 8 (after 24 sessions of intervention) | |
Secondary | Changes in cadence | An inertial sensor system (LegSys) will be placed above the malleolus in both lower limbs for assessing gait cadence. The patient will be asked to walk at their normal pace for a 10 (ten) metre length, if necessary with their assistive device. | Baseline and week 8 (after 24 sessions of intervention) | |
Secondary | Changes in stride length | An inertial sensor system (LegSys) will be placed above the malleolus in both lower limbs for assessing gait cadence. The patient will be asked to walk at their normal pace for a 10 (ten) metre length, if necessary with their assistive device. | Baseline and week 8 (after 24 sessions of intervention) | |
Secondary | Change in stride time | An inertial sensor system (LegSys) will be placed above the malleolus in both lower limbs for assessing gait cadence. The patient will be asked to walk at their normal pace for a 10 (ten) metre length, if necessary with their assistive device. | Baseline and week 8 (after 24 sessions of intervention) | |
Secondary | Change in swing phase | An inertial sensor system (LegSys) will be placed above the malleolus in both lower limbs for assessing gait cadence. The patient will be asked to walk at their normal pace for a 10 (ten) metre length, if necessary with their assistive device. | Baseline and week 8 (after 24 sessions of intervention) | |
Secondary | Change in stance phase | An inertial sensor system (LegSys) will be placed above the malleolus in both lower limbs for assessing gait cadence. The patient will be asked to walk at their normal pace for a 10 (ten) metre length, if necessary with their assistive device. | Baseline and week 8 (after 24 sessions of intervention) | |
Secondary | Change in double support | An inertial sensor system (LegSys) will be placed above the malleolus in both lower limbs for assessing gait cadence. The patient will be asked to walk at their normal pace for a 10 (ten) metre length, if necessary with their assistive device. | Baseline and week 8 (after 24 sessions of intervention) | |
Secondary | Change in stride velocity | An inertial sensor system (LegSys) will be placed above the malleolus in both lower limbs for assessing gait cadence. The patient will be asked to walk at their normal pace for a 10 (ten) metre length, if necessary with their assistive device. | Baseline and week 8 (after 24 sessions of intervention) | |
Secondary | Change in spasticity | Modified Tardieu scale will be performed with volunteers in supine position, and the assessed lower limb extended on the stretcher. Passive stretching of the triceps surae will be applied with faster speed and then with slow speed from the position of maximum plantarflexion to the maximum possible dorsiflexion to determine the values of R1 (the angle of muscle reaction with fast speed stretch) and R2 (degrees of dorsiflexion reached with slow speed stretch). | Baseline, immediately after first session and week 8 (after 24 sessions of intervention) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03780296 -
Implementing Technology Enhanced Real Time Action Observation Therapy in Persons With Chronic Stroke
|
N/A | |
Not yet recruiting |
NCT06057584 -
Effect of Somatosensory Motor Intergration Training on Post-stroke Upper Limb Function.
|
N/A | |
Completed |
NCT03228264 -
A Trial Investigating Telerehabilitation as an add-on to Face-to-face Speech and Language Therapy in Post-stroke Aphasia.
|
N/A | |
Completed |
NCT03531567 -
Game-Based Home Exercise Programs in Chronic Stroke: A Feasibility Study
|
N/A | |
Completed |
NCT02364232 -
Effects of Home-based vs. Clinic-based Rehabilitation on Sensorimotor, Cognition, Daily Function, and Participation
|
N/A | |
Completed |
NCT04121754 -
Post-Stroke Walking Speed and Community Ambulation Conversion Study
|
N/A | |
Completed |
NCT04574687 -
Effects of Action Observation Therapy on Fine Motor Skills of Upper Limb Functions in Chronic Stroke Patients.
|
N/A | |
Recruiting |
NCT04974840 -
Thera-band Resisted Treadmill Training for Chronic Stroke Patients
|
N/A | |
Recruiting |
NCT04534556 -
Wireless Nerve Stimulation Device To Enhance Recovery After Stroke
|
N/A | |
Completed |
NCT04553198 -
Quantifying the Role of Sensory Systems Processing in Post-Stroke Walking Recovery
|
N/A | |
Completed |
NCT04226417 -
Effect of Home Based Transcranial Direct Current Stimulation (tDCS) With Exercise on Upper and Lower Limb Motor Functions in Chronic Stroke
|
N/A | |
Recruiting |
NCT06049849 -
Can Patients With Chronic Stroke Regain Living Independence by Daily Energizing With Biophoton Generators
|
N/A | |
Active, not recruiting |
NCT02881736 -
Proprioceptive Deficits and Anomalies in Movement-error Processing in Chronic Stroke Patients
|
N/A | |
Completed |
NCT03208634 -
Rehabilitation Multi Sensory Room for Robot Assisted Functional Movements in Upper-limb Rehabilitation in Chronic Stroke
|
N/A | |
Completed |
NCT05183100 -
Effects of Neurodynamics on Lower Extremity Spasticity - a Study in Chronic Stroke
|
N/A | |
Completed |
NCT03326349 -
Home-based Computerized Cognitive Rehabilitation in Chronic Stage Stroke
|
N/A | |
Recruiting |
NCT04721860 -
Optimizing Training in Severe Post-Stroke Walking Impairment
|
N/A | |
Recruiting |
NCT06051539 -
Outcomes and Health Economics of Stroke Using Rhythmic Auditory Stimulation
|
N/A | |
Not yet recruiting |
NCT06060470 -
Active Balance and Cardio Care Intervention on Physical and Cardiovascular Health in People With Chronic Stroke
|
N/A | |
Recruiting |
NCT05591196 -
Hand and Arm Motor Recovery Via Non-invasive Electrical Spinal Cord Stimulation After Stroke
|
N/A |