Clinical Trials Logo

Chronic Myelomonocytic Leukemia clinical trials

View clinical trials related to Chronic Myelomonocytic Leukemia.

Filter by:

NCT ID: NCT00171912 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Imatinib Mesylate in Patients With Various Types of Malignancies Involving Activated Tyrosine Kinase Enzymes

Start date: September 2004
Phase: Phase 2
Study type: Interventional

This trial is for various types of malignancies which may depend on certain enzymes (tyrosine kinases) for growth. The objective of this study is to assess to what extent imatinib mesylate blocks these enzymes and to assess the effect on the malignancy.

NCT ID: NCT00136409 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

A Study of Gleevec in Patients With Idiopathic Myelofibrosis or Chronic Myelomonocytic Leukemia (CMML)

Start date: May 2002
Phase: Phase 2
Study type: Interventional

The purpose of this study is to determine the effects (good and bad) of Gleevec in patients with BCR-negative myeloproliferative disorders including myelofibrosis with myeloid metaplasia and chronic myelomonocytic leukemia.

NCT ID: NCT00119366 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Total Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

Start date: May 2003
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and best dose of iodine I 131 monoclonal antibody BC8 when given together with fludarabine phosphate, total-body irradiation, and donor stem cell transplant followed by cyclosporine and mycophenolate mofetil in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has spread to other places in the body and usually cannot be cured or controlled with treatment. Giving chemotherapy drugs, such as fludarabine phosphate, and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. Also, radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving fludarabine phosphate and total-body irradiation before the transplant together with cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. Giving a radiolabeled monoclonal antibody together with donor stem cell transplant, cyclosporine, and mycophenolate mofetil may be an effective treatment for advanced acute myeloid leukemia or myelodysplastic syndromes.

NCT ID: NCT00118352 Active, not recruiting - Clinical trials for Chronic Myelomonocytic Leukemia

Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

Start date: March 2005
Phase: Phase 2
Study type: Interventional

This phase II trial is studying the side effects and best dose of alemtuzumab when given together with fludarabine phosphate and total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients who are undergoing a donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, a monoclonal antibody, such as alemtuzumab, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT00113321 Terminated - Clinical trials for Myelodysplastic Syndrome

Low-Dose Decitabine in Myelodysplastic Syndrome Post Azacytidine Failure

Start date: March 2005
Phase: Phase 2
Study type: Interventional

To study if decitabine can help to control Myelodysplastic Syndrome (MDS) in patients who have failed on therapy with azacytidine, the current standard of therapy.

NCT ID: NCT00112593 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Fludarabine and Total-Body Irradiation Followed By Donor Stem Cell Transplant and Cyclosporine and Mycophenolate Mofetil in Treating HIV-Positive Patients With or Without Cancer

Start date: November 1999
Phase: N/A
Study type: Interventional

This clinical trial studies the side effects and best dose of giving fludarabine and total-body irradiation (TBI) together followed by a donor stem cell transplant and cyclosporine and mycophenolate mofetil in treating human immunodeficiency virus (HIV)-positive patients with or without cancer. Giving low doses of chemotherapy, such as fludarabine, and TBI before a donor bone marrow or peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after the transplant may stop this from happening.

NCT ID: NCT00101179 Completed - Leukemia Clinical Trials

MS-275 and Azacitidine in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

Start date: November 3, 2004
Phase: Phase 1
Study type: Interventional

MS-275 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving MS-275 together with azacitidine may kill more cancer cells. This phase I trial is studying the side effects and best dose of MS-275 when given together with azacitidine in treating patients with myelodysplastic syndromes, chronic myelomonocytic leukemia, or acute myeloid leukemia.

NCT ID: NCT00098423 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

Start date: November 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of tanespimycin when given with cytarabine in treating patients with relapsed or refractory acute myeloid leukemia, acute lymphoblastic leukemia, chronic myelogenous leukemia, chronic myelomonocytic leukemia, or myelodysplastic syndromes. Drugs used in chemotherapy, such as tanespimycin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Tanespimycin may also help cytarabine kill more cancer cells by making cancer cells more sensitive to the drug. Giving tanespimycin together with cytarabine may kill more cancer cells.

NCT ID: NCT00096122 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Idarubicin, Cytarabine, and Tipifarnib in Treating Patients With Newly Diagnosed Myelodysplastic Syndromes or Acute Myeloid Leukemia

Start date: September 2004
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial is studying the side effects and best dose of tipifarnib when given with idarubicin and cytarabine and to see how well it works in treating patients with newly diagnosed myelodysplastic syndromes or acute myeloid leukemia. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop cancer cells from dividing so they stop growing or die. Tipifarnib (Zarnestra) may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Giving idarubicin and cytarabine with tipifarnib may kill more cancer cells.

NCT ID: NCT00095797 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

XK469R in Treating Patients With Refractory Hematologic Cancer

Start date: October 2004
Phase: Phase 1
Study type: Interventional

Phase I trial to study the effectiveness of XK469R in treating patients who have refractory hematologic cancer. Drugs used in chemotherapy, such XK469R, work in different ways to stop cancer cells from dividing so they stop growing or die