Clinical Trials Logo

Chronic Myelomonocytic Leukemia clinical trials

View clinical trials related to Chronic Myelomonocytic Leukemia.

Filter by:

NCT ID: NCT00397813 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Fludarabine Phosphate and Total Body Irradiation Followed by a Donor Peripheral Stem Cell Transplant in Treating Patients With Myelodysplastic Syndromes or Myeloproliferative Disorders

Start date: January 2006
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and best dose of total-body irradiation when given together with fludarabine phosphate followed by a donor peripheral stem cell transplant in treating patients with myelodysplastic syndromes (MDS) or myeloproliferative disorders (MPD). Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT00392353 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Vorinostat and Azacitidine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

Start date: November 22, 2006
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of vorinostat and azacitidine and to see how well they work in treating patients with myelodysplastic syndromes or acute myeloid leukemia. Vorinostat may stop the growth of cancer or abnormal cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer or abnormal cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving vorinostat together with azacitidine may kill more cancer or abnormal cells.

NCT ID: NCT00387426 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Sunitinib in Treating Patients With Idiopathic Myelofibrosis

Start date: September 2006
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well sunitinib works in treating patients with idiopathic myelofibrosis. Sunitinib may stop the growth of abnormal cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the abnormal cells.

NCT ID: NCT00381550 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

3-AP and Fludarabine in Treating Patients With Myeloproliferative Disorders, Chronic Myelomonocytic Leukemia, or Accelerated Phase or Blastic Phase Chronic Myelogenous Leukemia

Start date: August 2006
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well giving 3-AP together with fludarabine works in treating patients with myeloproliferative disorders (MPD), chronic myelomonocytic leukemia (CMML), or accelerated phase or blastic phase chronic myelogenous leukemia. Drugs used in chemotherapy, such as 3-AP and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. 3-AP may help fludarabine work better by making cancer cells more sensitive to the drug. 3-AP and fludarabine may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving 3-AP together with fludarabine may kill more cancer cells.

NCT ID: NCT00357708 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Vorinostat and Decitabine in Treating Patients With Relapsed, Refractory, or Poor-Prognosis Hematologic Cancer or Other Diseases

Start date: June 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat and decitabine in treating patients with relapsed, refractory, or poor-prognosis hematologic cancer or other diseases. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with decitabine may kill more cancer cells

NCT ID: NCT00357305 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute Leukemia or Myelodysplastic Syndromes or Myeloproliferative Disorders

Start date: May 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with cytarabine and etoposide in treating patients with relapsed or refractory acute leukemia or myelodysplastic syndromes or myeloproliferative disorders. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with cytarabine and etoposide may kill more cancer cells.

NCT ID: NCT00351975 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Belinostat and Azacitidine in Treating Patients With Advanced Hematologic Cancers or Other Diseases

Start date: June 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of belinostat when given together with azacitidine in treating patients with advanced hematologic cancers or other diseases. Belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving belinostat together with azacitidine may kill more cancer cells.

NCT ID: NCT00313586 Active, not recruiting - Clinical trials for Chronic Myelomonocytic Leukemia

Azacitidine With or Without Entinostat in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

Start date: August 2006
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies azacitidine with or without entinostat to see how well they work compared to azacitidine alone in treating patients with myelodysplastic syndromes, chronic myelomonocytic leukemia, or acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Entinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine together with entinostat may work better in treating patients with myelodysplastic syndromes, chronic myelomonocytic leukemia, or acute myeloid leukemia.

NCT ID: NCT00299156 Completed - Clinical trials for Myelodysplastic Syndrome

Oral Clofarabine Study in Patients With Myelodysplastic Syndrome

Start date: March 2006
Phase: Phase 2
Study type: Interventional

The goal of this clinical research study is to learn if clofarabine given by mouth on a weekly schedule can help to control MDS. The safety of clofarabine given by mouth will also be studied.

NCT ID: NCT00283114 Completed - Clinical trials for Acute Myeloid Leukemia

A Safety Study of Lintuzumab in Patients With Acute Myeloid Leukemia and Myelodysplastic Syndrome

Start date: November 2005
Phase: Phase 1
Study type: Interventional

Phase 1a is an open-label, multi-dose, single-arm, dose-escalation study to define the toxicity profile, pharmacokinetics, and antitumor activity of SGN-33 in patients with myelodysplastic syndrome (MDS), acute myelogenous leukemia(AML), and CD33+ myeloproliferative diseases. Phase 1b includes patients with AML or MDS treated at the highest tolerated dose from phase 1a.