View clinical trials related to Chronic Myelomonocytic Leukemia.
Filter by:This phase II trial studies reduced-intensity conditioning before donor stem cell transplant in treating patients with high-risk hematologic malignancies. Giving low-doses of chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) before the transplant may help increase this effect.
This phase I trial studies the side effects and best dose of ipilimumab and how well it works in treating patients with high-risk myelodysplastic syndrome or acute myeloid leukemia that has come back or no longer responds to treatment. Monoclonal antibodies, such as ipilimumab, may interfere with the ability of cancer cells to grow and spread.
The purpose of this study is to determine whether cyclophosphamide post bone marrow transplant increases the rate of patients alive, in remission and without immunosuppression, one year after transplant, when compared with the combination of methotrexate and calcineurin inhibitor
The primary objective of this study is to determine a safe, tolerable and effective dose of sotatercept that results in the greatest frequency of improvement of anemia in patients diagnosed with low- or intermediate-1 risk myelodysplastic syndromes (MDS) or non-proliferative chronic myelomonocytic leukemia (CMML).
This pilot phase II trial studies how well erlotinib hydrochloride works in treating patients with relapsed or refractory acute myeloid leukemia. Erlotinib hydrochloride may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Background: - Several types of blood cancer are associated with poor outcomes including high-risk myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML) and acute myelogenous leukemia (AML). Many people with MDS, CMML, and AML are not candidates for standard treatments. New types of treatment are needed for these cancers. - Clofarabine and lenalidomide are anticancer drugs. The first damages cancer cells in the body. The second can alter blood supply to abnormal cells or affect how the immune system attacks these cells. These drugs have been previously tested as treatments for MDS and leukemia. However, they have not been tried as a combination for MDS, CMML, and AML. Researchers want to see if these drugs are safe and effective for these types of cancer. Objectives: - To test the safety and effectiveness of clofarabine and lenalidomide for people with high-risk MDS, CMML, and AML. Eligibility: - Individuals at least 18 years of age who have high-risk MDS, CMML, and AML. - Participants must not be candidates for standard treatments. Design: - Participants will be screened with a physical exam and medical history. Blood and bone marrow samples will be collected. - Participants will have 5 days of treatment with clofarabine. It will be given through a vein during an inpatient hospital stay. If there are no serious side effects after the infusion, participants will continue treatment as outpatients. - After 28 days, participants will have a bone marrow biopsy to check their response to treatment. - After the biopsy, participants will start lenalidomide treatment. Half of the participants will take the drug for 28 days (one treatment cycle). The other half will take it for 56 days (two cycles). More blood tests and biopsies will be used to monitor treatment. - If there are no serious side effects and the disease does not become worse, participants may keep taking lenalidomide at lower doses for up to 12 more cycles.
This phase II trial studies how well targeted therapy works in treating patients with acute lymphoblastic leukemia or acute myelogenous leukemia that has come back after a period of improvement or does not respond to treatment. Testing patients' blood or bone marrow to find out if their type of cancer may be sensitive to a specific drug may help doctors choose more effective treatments. Dasatinib, sunitinib malate, sorafenib tosylate, ponatinib hydrochloride, pacritinib, ruxolitinib, and idelalisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving targeted therapy based on cancer type may be an effective treatment for acute lymphoblastic leukemia or acute myelogenous leukemia.
This registry is set up to collect real-world experience in the management of patients with myeloid neoplasms, in particularly in patients with MDS, CMML or AML, treated with hypomethylating agents in Austria and potentially other participating countries. This registry will collect data in a retrospective as well as in a prospective manner at various sites. The aim is to gain valuable insights on both efficacy and toxicity of these drugs in a routine clinical setting in patients with various comorbidities.
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This pilot clinical trial studies mechanical stimulation in preventing bone density loss in patients undergoing donor stem cell transplant. Mechanical stimulation may limit, prevent, or reverse bone loss, increase muscle and cardiac performance, and improve overall health