Clinical Trials Logo

Chronic Myelomonocytic Leukemia clinical trials

View clinical trials related to Chronic Myelomonocytic Leukemia.

Filter by:

NCT ID: NCT01894477 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Treo/Flu/TBI With Donor Stem Cell Transplant for Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia

Start date: November 2013
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well treosulfan and fludarabine phosphate, with or without total body irradiation before donor stem cell transplant works in treating patients with myelodysplastic syndrome or acute myeloid leukemia. Giving chemotherapy, such as treosulfan and fludarabine phosphate, and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus before and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT01885689 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Clofarabine and Melphalan Before Donor Stem Cell Transplant in Treating Patients With Myelodysplasia, Acute Leukemia in Remission, or Chronic Myelomonocytic Leukemia

Start date: February 10, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well clofarabine and melphalan before a donor stem cell transplant works in treating patients with a decrease in or disappearance of signs and symptoms of myelodysplasia or acute leukemia (disease is in remission), or chronic myelomonocytic leukemia. Giving chemotherapy, such as clofarabine and melphalan, before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into a patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving clofarabine and melphalan before transplant may help prevent the cancer from coming back after transplant, and they may cause fewer side effects than standard treatment.

NCT ID: NCT01872819 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Treatment for Relapsed/Refractory AML Based on a High Throughput Drug Sensitivity Assay

Start date: August 2, 2013
Phase: N/A
Study type: Interventional

This clinical trial uses a laboratory test called a high throughput sensitivity assay in planning treatment for patients with relapsed or refractory acute myeloid leukemia. The aim is to try to identify drugs that may be effective in killing leukemia cells for those patients who will not be cured with conventional chemotherapy. This assay will test multiple drugs simultaneously against a patient's own donated blood sample. The goal is to use this laboratory assay to best match a drug to a patient's disease.

NCT ID: NCT01834248 Completed - Clinical trials for Acute Myeloid Leukemia

DEC-205/NY-ESO-1 Fusion Protein CDX-1401and Decitabine in Treating Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia

Start date: July 30, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and immune response to DEC-205/NY-ESO-1 fusion protein CDX-1401 and decitabine in patients with myelodysplastic syndrome or acute myeloid leukemia. DEC-205-NY-ESO-1 fusion protein, called CDX-1401, is a full length NY-ESO-1 protein sequence fused to a monoclonal antibody against DEC-205, a surface marker present on many immune stimulatory cells. This drug is given with another substance called PolyICLC, which acts to provoke any immune stimulatory cells which encounter the NY-ESO-1-DEC-205 fusion protein to produce an immune response signal against NY-ESO-1. Immune cells which have thus been primed to react against NY-ESO-1 may then attack myelodysplastic or leukemic cells which express NY-ESO-1 after exposure to the drug decitabine. The chemotherapy drug decitabine is thought to act in several different ways, first, it may directly kill cancer cells, and secondly, the drug can cause cancer cells to re-express genes that are turned off by the cancer, including the gene for NY-ESO-1. Giving DEC-205/NY-ESO-1 fusion protein (CDX-1401) and polyICLC together with decitabine may allow the immune system to more effectively recognize cancer cells and kill them.

NCT ID: NCT01831232 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Idarubicin, Cytarabine, and Pravastatin Sodium in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes

Start date: May 2013
Phase: N/A
Study type: Interventional

This clinical trial studies idarubicin, cytarabine, and pravastatin sodium in treating patients with newly diagnosed acute myeloid leukemia or myelodysplastic syndromes. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Pravastatin sodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving idarubicin and cytarabine together with pravastatin sodium may kill more cancer cells.

NCT ID: NCT01823198 Completed - Clinical trials for Acute Myeloid Leukemia

Donor Natural Killer Cells and Donor Stem Cell Transplant in Treating Patients With High Risk Myeloid Malignancies

Start date: June 11, 2013
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of donor natural killer cells when given together with donor stem cell transplant and to see how well they work in treating patients with myeloid malignancies that are likely to come back or spread. Giving chemotherapy, such as busulfan and fludarabine phosphate, before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

NCT ID: NCT01812252 Completed - Clinical trials for Myelodysplastic Syndrome

Chemotherapy in Treating Patients With Myelodysplastic Syndrome Before Donor Stem Cell Transplant

ICT-HCT
Start date: August 19, 2013
Phase: Phase 2
Study type: Interventional

This randomized clinical trial studies different chemotherapies in treating patients with myelodysplastic syndrome before donor stem cell transplant. Giving chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells, and may prevent the myelodysplastic syndrome from coming back after the transplant. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

NCT ID: NCT01789255 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Vorinostat, Tacrolimus, and Methotrexate in Preventing GVHD After Stem Cell Transplant in Patients With Hematological Malignancies

Start date: June 2013
Phase: Phase 2
Study type: Interventional

This pilot phase II trial studies how well giving vorinostat, tacrolimus, and methotrexate works in preventing graft-versus-host disease (GVHD) after stem cell transplant in patients with hematological malignancies. Vorinostat, tacrolimus, and methotrexate may be an effective treatment for GVHD caused by a bone marrow transplant.

NCT ID: NCT01773395 Terminated - Clinical trials for Acute Myeloid Leukemia

GVAX vs. Placebo for MDS/AML After Allo HSCT

Start date: January 8, 2013
Phase: Phase 2
Study type: Interventional

This research study is a Phase II clinical trial. Phase II clinical trials test the effectiveness of an investigational intervention to learn whether the intervention, in this case, the GVAX vaccine, works in preventing MDS, CMML, or AML from relapsing after allogeneic stem cell transplantation. "Investigational" means that the vaccine is still being studied and that research doctors are trying to find out more about it-such as the side effects it may cause, and if the vaccine is effective. It also means that the FDA has not yet approved the vaccine for these types of cancer. Participants are being asked to participate in this trial because they have advanced myelodysplastic syndrome (MDS), Chronic Myelomonocytic Leukemia (CMML), or acute myeloid leukemia (AML). Investigators have determined that participants are a candidate for an allogeneic stem cell transplant as treatment for MDS/CMML/AML. Allogeneic stem cell transplantation is a standard treatment for MDS/CMML/AML. It can be effective because the cells from the donor (also known as the graft) could form a new immune system that can fight against the MDS/CMML/AML cells in the body. This is also known as the "graft-versus-leukemia" or "GVL" effect. In patients with advanced MDS, CMML, or AML that is not in remission at the time of transplantation, relapse remains the number one cause of transplant failure. As such, this clinical trial is designed to assess whether adding a leukemia vaccine early after transplantation could stimulate donor cells to fight cancer and improve transplant outcomes. In recent years, researchers at the Dana-Farber Cancer Institute have discovered that GVAX, a vaccine made from the patient's own cancer cells engineered to produce a protein called GM-CSF, can be effective in stimulating a powerful immune response specific to that cancer. GM-CSF is a naturally occurring hormone in the body that helps the immune system fight infections and diseases. The GVAX vaccine is made in the laboratory by using a virus (called adenovirus, which has been modified so it cannot cause illness) to insert the GM-CSF gene into tumor cells. The cells are then irradiated, which prevents them from being able to grow, before being administered to patients in a series of vaccinations. A previous phase I clinical trial using this GVAX vaccine in patients with MDS/AML after allogeneic transplantation demonstrated that the GVAX vaccine is safe, and the survival outcomes were encouraging. The current randomized phase II study will investigate this vaccine further and gather more information to assess the activity. Participants in this study will be "randomized" to receive either GVAX vaccination or placebo (a saline solution) vaccination. Randomization means participants are put into a group by chance. It is like flipping a coin. There is a 50% chance they will receive the GVAX vaccine and a 50% chance they will receive placebo. Neither participants nor investigators will know which participants will be receiving. The primary goal of this trial is to assess if there will be a difference in the percentage of cancer free survivors in the vaccinated vs. placebo group at 18 months after transplant.

NCT ID: NCT01772420 Completed - Anemia Clinical Trials

Phase II Study of Lenalidomide and Eltrombopag in Patients With Symptomatic Anemia

Start date: October 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well lenalidomide (LEN) and eltrombopag olamine (ELT) work in treating patients with symptomatic anemia in low or intermediate myelodysplastic syndrome (MDS). Lenalidomide may stimulate the immune system in different ways and stop cancer cells from growing. Eltrombopag olamine may increase the number of white blood cells and platelets found in bone marrow or peripheral blood. Giving lenalidomide and eltrombopag olamine may be an effective treatment for myelodysplastic syndrome.