Chronic Kidney Diseases Clinical Trial
— FORTIFYOfficial title:
Fibrosis, Inflammation, Oxygenation of Renal Tissue In FabrY Disease
The overall objective of this study is to investigate Fabry-associated renal organ involvement by using a novel magnetic resonance imaging (MRI) approach, focusing on changes in renal oxygen levels by blood oxygenation-level dependent (BOLD) imaging. Furthermore, to correlate renal oxygenation to the phenotypic presentation of patients with Fabry-associated nephropathy regarding circulating and imaging-derived biomarkers of kidney inflammation, fibrosis and injury as compared with healthy age- and sex-matched controls. The study will achieve this by: 1) Using a non-invasive, contrast-free MRI protocol focusing on parameters of oxygenation, inflammation, fibrosis, and injury in the kidney. 2) Using an extensive, in-depth biomarker blood panel to investigate the pathological pathways associated with Fabry disease and Fabry-associated nephropathy.
Status | Not yet recruiting |
Enrollment | 60 |
Est. completion date | June 1, 2025 |
Est. primary completion date | March 1, 2025 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Fabry patients: Inclusion Criteria: - Male and female individuals (=18 years of age) - Able to give informed consent Exclusion Criteria: - Any contraindication for magnetic resonance imaging according to standard checklist used in clinical routine, including claustrophobia or metallic foreign bodies, metallic implants, internal electrical devices, or permanent makeup/tattoos that cannot be declared MR compatible. - Pregnancy Control group Inclusion criteria - Male and female individuals (=18 years of age) - Able to give informed consent Exclusion criteria - A genetically-verified diagnosis of Fabry disease. - Family member to a patient with a genetically-verified diagnosis of Fabry disease - Cancer expected to influence life expectancy. - Known heart failure, previous apoplexia or previously established kidney disease. - Initiation or change of antihypertensive therapy within 3 months of enrolment - Renal impairment as depicted by the CKD-EPI classification (= CKD G2/A1) - Any contraindication for MRI according to standard checklist used in clinical routine, including claustrophobia or metallic foreign bodies, metallic implants, internal electrical devices, or permanent makeup/tattoos that cannot be declared MR compatible. - Pregnancy |
Country | Name | City | State |
---|---|---|---|
Denmark | Rigshospitalet | Copenhagen |
Lead Sponsor | Collaborator |
---|---|
Caroline Michaela Kistorp | Sanofi |
Denmark,
Deegan PB, Baehner AF, Barba Romero MA, Hughes DA, Kampmann C, Beck M; European FOS Investigators. Natural history of Fabry disease in females in the Fabry Outcome Survey. J Med Genet. 2006 Apr;43(4):347-52. doi: 10.1136/jmg.2005.036327. Epub 2005 Oct 14. — View Citation
Eikrem O, Skrunes R, Tondel C, Leh S, Houge G, Svarstad E, Marti HP. Pathomechanisms of renal Fabry disease. Cell Tissue Res. 2017 Jul;369(1):53-62. doi: 10.1007/s00441-017-2609-9. Epub 2017 Apr 12. No abstract available. — View Citation
Fall B, Scott CR, Mauer M, Shankland S, Pippin J, Jefferson JA, Wallace E, Warnock D, Najafian B. Urinary Podocyte Loss Is Increased in Patients with Fabry Disease and Correlates with Clinical Severity of Fabry Nephropathy. PLoS One. 2016 Dec 16;11(12):e0168346. doi: 10.1371/journal.pone.0168346. eCollection 2016. — View Citation
Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, Feliciani C, Shankar SP, Ezgu F, Amartino H, Bratkovic D, Feldt-Rasmussen U, Nedd K, Sharaf El Din U, Lourenco CM, Banikazemi M, Charrow J, Dasouki M, Finegold D, Giraldo P, Goker-Alpan O, Longo N, Scott CR, Torra R, Tuffaha A, Jovanovic A, Waldek S, Packman S, Ludington E, Viereck C, Kirk J, Yu J, Benjamin ER, Johnson F, Lockhart DJ, Skuban N, Castelli J, Barth J, Barlow C, Schiffmann R. Treatment of Fabry's Disease with the Pharmacologic Chaperone Migalastat. N Engl J Med. 2016 Aug 11;375(6):545-55. doi: 10.1056/NEJMoa1510198. — View Citation
Heyman SN, Khamaisi M, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol. 2008;28(6):998-1006. doi: 10.1159/000146075. Epub 2008 Jul 18. — View Citation
Hughes DA, Aguiar P, Deegan PB, Ezgu F, Frustaci A, Lidove O, Linhart A, Lubanda JC, Moon JC, Nicholls K, Niu DM, Nowak A, Ramaswami U, Reisin R, Rozenfeld P, Schiffmann R, Svarstad E, Thomas M, Torra R, Vujkovac B, Warnock DG, West ML, Johnson J, Rolfe MJ, Feriozzi S. Early indicators of disease progression in Fabry disease that may indicate the need for disease-specific treatment initiation: findings from the opinion-based PREDICT-FD modified Delphi consensus initiative. BMJ Open. 2020 Oct 10;10(10):e035182. doi: 10.1136/bmjopen-2019-035182. — View Citation
Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, Watanabe Y, Takenaka T, Katayama S, Tanaka J, Suzuki H. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol. 2011 Aug;22(8):1429-34. doi: 10.1681/ASN.2010111143. Epub 2011 Jul 14. — View Citation
Jehn U, Bayraktar S, Pollmann S, Van Marck V, Weide T, Pavenstadt H, Brand E, Lenders M. alpha-Galactosidase a Deficiency in Fabry Disease Leads to Extensive Dysregulated Cellular Signaling Pathways in Human Podocytes. Int J Mol Sci. 2021 Oct 20;22(21):11339. doi: 10.3390/ijms222111339. — View Citation
Laursen JC, Sondergaard-Heinrich N, Haddock B, Rasmussen IKB, Hansen CS, Larsson HBW, Groop PH, Bjornstad P, Frimodt-Moller M, Andersen UB, Rossing P. Kidney oxygenation, perfusion and blood flow in people with and without type 1 diabetes. Clin Kidney J. 2022 May 20;15(11):2072-2080. doi: 10.1093/ckj/sfac145. eCollection 2022 Nov. — View Citation
Linhart A, Elliott PM. The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart. 2007 Apr;93(4):528-35. doi: 10.1136/hrt.2005.063818. No abstract available. — View Citation
Najafian B, Tondel C, Svarstad E, Gubler MC, Oliveira JP, Mauer M. Accumulation of Globotriaosylceramide in Podocytes in Fabry Nephropathy Is Associated with Progressive Podocyte Loss. J Am Soc Nephrol. 2020 Apr;31(4):865-875. doi: 10.1681/ASN.2019050497. Epub 2020 Mar 3. — View Citation
Pruijm M, Mendichovszky IA, Liss P, Van der Niepen P, Textor SC, Lerman LO, Krediet CTP, Caroli A, Burnier M, Prasad PV. Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol Dial Transplant. 2018 Sep 1;33(suppl_2):ii22-ii28. doi: 10.1093/ndt/gfy243. — View Citation
Pruijm M, Milani B, Burnier M. Blood Oxygenation Level-Dependent MRI to Assess Renal Oxygenation in Renal Diseases: Progresses and Challenges. Front Physiol. 2017 Jan 5;7:667. doi: 10.3389/fphys.2016.00667. eCollection 2016. — View Citation
Ravarotto V, Carraro G, Pagnin E, Bertoldi G, Simioni F, Maiolino G, Martinato M, Landini L, Davis PA, Calo LA. Oxidative stress and the altered reaction to it in Fabry disease: A possible target for cardiovascular-renal remodeling? PLoS One. 2018 Sep 27;13(9):e0204618. doi: 10.1371/journal.pone.0204618. eCollection 2018. — View Citation
Ravarotto V, Simioni F, Carraro G, Bertoldi G, Pagnin E, Calo LA. Oxidative Stress and Cardiovascular-Renal Damage in Fabry Disease: Is There Room for a Pathophysiological Involvement? J Clin Med. 2018 Nov 2;7(11):409. doi: 10.3390/jcm7110409. — View Citation
Sanchez-Nino MD, Carpio D, Sanz AB, Ruiz-Ortega M, Mezzano S, Ortiz A. Lyso-Gb3 activates Notch1 in human podocytes. Hum Mol Genet. 2015 Oct 15;24(20):5720-32. doi: 10.1093/hmg/ddv291. Epub 2015 Jul 23. — View Citation
Selby NM, Blankestijn PJ, Boor P, Combe C, Eckardt KU, Eikefjord E, Garcia-Fernandez N, Golay X, Gordon I, Grenier N, Hockings PD, Jensen JD, Joles JA, Kalra PA, Kramer BK, Mark PB, Mendichovszky IA, Nikolic O, Odudu A, Ong ACM, Ortiz A, Pruijm M, Remuzzi G, Rorvik J, de Seigneux S, Simms RJ, Slatinska J, Summers P, Taal MW, Thoeny HC, Vallee JP, Wolf M, Caroli A, Sourbron S. Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant. 2018 Sep 1;33(suppl_2):ii4-ii14. doi: 10.1093/ndt/gfy152. — View Citation
Waldek S, Patel MR, Banikazemi M, Lemay R, Lee P. Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry. Genet Med. 2009 Nov;11(11):790-6. doi: 10.1097/GIM.0b013e3181bb05bb. — View Citation
Wanner C, Germain DP, Hilz MJ, Spada M, Falissard B, Elliott PM. Therapeutic goals in Fabry disease: Recommendations of a European expert panel, based on current clinical evidence with enzyme replacement therapy. Mol Genet Metab. 2019 Mar;126(3):210-211. doi: 10.1016/j.ymgme.2018.04.004. Epub 2018 Apr 11. No abstract available. — View Citation
Warnock DG, Thomas CP, Vujkovac B, Campbell RC, Charrow J, Laney DA, Jackson LL, Wilcox WR, Wanner C. Antiproteinuric therapy and Fabry nephropathy: factors associated with preserved kidney function during agalsidase-beta therapy. J Med Genet. 2015 Dec;52(12):860-6. doi: 10.1136/jmedgenet-2015-103471. Epub 2015 Oct 21. — View Citation
Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U, Sims K, Waldek S, Pastores GM, Lee P, Eng CM, Marodi L, Stanford KE, Breunig F, Wanner C, Warnock DG, Lemay RM, Germain DP; Fabry Registry. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab. 2008 Feb;93(2):112-28. doi: 10.1016/j.ymgme.2007.09.013. Epub 2007 Nov 26. — View Citation
Yogasundaram H, Kim D, Oudit O, Thompson RB, Weidemann F, Oudit GY. Clinical Features, Diagnosis, and Management of Patients With Anderson-Fabry Cardiomyopathy. Can J Cardiol. 2017 Jul;33(7):883-897. doi: 10.1016/j.cjca.2017.04.015. Epub 2017 May 4. — View Citation
* Note: There are 22 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Renal hypoxia (Fabry patients according to renal impairment) | A between-group difference in renal hypoxia (R*) evaluated by BOLD MRI when comparing the groups of patients with Fabry disease. | At baseline | |
Secondary | Renal hypoxia (Fabry patient vs controls) | A between-group difference in renal hypoxia (R*) evaluated by BOLD MRI when comparing patients with Fabry disease irrespective of renal impairment with the control group. | At baseline | |
Secondary | Renal cortical perfusion (Fabry vs. controls) | A between-group difference in perfusion of the renal medulla (mL/100g/min) when comparing groups with Fabry disease patients with the control group | At baseline | |
Secondary | Renal medullar perfusion (Fabry vs. controls) | A between-group difference in renal blood flow (mL/min) when comparing groups with Fabry disease patients with the control group. | At baseline | |
Secondary | Renal inflammation (Fabry vs. controls) | A between-group difference in native T1 (ms) when comparing groups with Fabry disease patients with the control group. | At baseline | |
Secondary | Renal fibrosis (Fabry vs. controls) | A between-group difference in diffusion-weigthed signaling when comparing groups with Fabry disease patients with the control group. | At baseline |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06386172 -
Electronic Decision-support System to Improve Detection and Care of Patients With Chronic Kidney Disease in Stockholm
|
N/A | |
Recruiting |
NCT04910867 -
APOL1 Genetic Testing Program for Living Donors
|
N/A | |
Completed |
NCT03434145 -
Changes of Ocular Structures After Hemodialysis in Patients With Chronic Kidney Diseases
|
N/A | |
Recruiting |
NCT04984226 -
Sodium Bicarbonate and Mitochondrial Energetics in Persons With CKD
|
Phase 2 | |
Active, not recruiting |
NCT05887817 -
Effects of Finerenone on Vascular Stiffness and Cardiorenal Biomarkers in T2D and CKD (FIVE-STAR)
|
Phase 4 | |
Recruiting |
NCT05318196 -
Molecular Prediction of Development, Progression or Complications of Kidney, Immune or Transplantation-related Diseases
|
||
Terminated |
NCT05022329 -
COVID-19 Vaccine Boosters in Patients With CKD
|
Phase 2/Phase 3 | |
Not yet recruiting |
NCT04925661 -
HEC53856 Phase Ib Study in Patients With Non-dialysis Renal Anemia
|
Phase 1 | |
Recruiting |
NCT04961164 -
Resistant Starch Prebiotic Effects in Chronic Kidney Disease
|
N/A | |
Completed |
NCT05015647 -
Low Protein Diet in CKD Patients at Risk of Malnutrition
|
N/A | |
Completed |
NCT03426787 -
Helping Empower Liver and Kidney Patients
|
N/A | |
Recruiting |
NCT06094231 -
Treating Patients With Renal Impairment and Altered Glucose MetAbolism With TherapeutIc Carbohydrate Restriction and Sglt2-Inhibiton - a Pilot Study
|
N/A | |
Completed |
NCT04363554 -
The Kidneys Ability to Concentrate and Dilute Urine in Patients With Autosomal Dominant Polycystic Kidney Disease
|
N/A | |
Recruiting |
NCT04831021 -
Pre- or Per-dialytic Physical Exercise : a Cardioprotective Role?
|
N/A | |
Terminated |
NCT04877847 -
Multi-Center Trial Utilizing Low Frequency Ultrasound in the Prevention of Post-Contrast Acute Kidney Injury
|
N/A | |
Recruiting |
NCT04422652 -
Combination of Novel Therapies for CKD Comorbid Depression
|
Phase 2 | |
Completed |
NCT05055362 -
Effect a Honey, Spice-blended Baked Good Has on Salivary Inflammation Markers in Adults: a Pilot Study
|
N/A | |
Not yet recruiting |
NCT06330480 -
Check@Home: General Population Screening for Early Detection of Atrial Fibrillation and Chronic Kidney Disease
|
N/A | |
Recruiting |
NCT03176862 -
Left Ventricular Fibrosis in Chronic Kidney Disease
|
N/A | |
Terminated |
NCT02539680 -
Intestinal Phosphate Transporter Expression in CKD Patients
|
N/A |