View clinical trials related to Cervical Spinal Cord Injury.
Filter by:The Synchron motor neuroprosthesis (MNP) is intended to be used in subjects with severe motor impairment, unresponsive to medical or rehabilitative therapy and a persistent functioning motor cortex. The purpose of this research is to evaluate safety and feasibility. The MNP is a type of implantable brain computer interface which bypasses dysfunctional motor neurons. The device is designed to restore the transmission of neural signal from the cerebral cortex utilized for neuromuscular control of digital devices, resulting in a successful execution of non-mechanical digital commands.
Purpose: The objective of this study is to assess a newly created decision support intervention (DSI) or decision aid (DA) for people with spinal cord injury (SCI) to learn about and consider upper extremity reconstructive surgery to help them choose a course of treatment that most aligns with their values.
This study in order to best tidal volume mechanical ventilation in patients with cervical spinal cord injury (sci) as the research point, through higher low volume Settings to find the difference of two groups of patients to prevent the incidence of hypoxemia, to find suitable Settings, tidal volume in patients with lower mechanical ventilation in patients with cervical spinal cord injury (sci) the incidence of pulmonary complications, live less intensive care unit (ICU).
The purpose of this research project is to investigate the incidence of impaired swallowing (dysphagia) after anterior cervical spine surgery (ACSS) and to study the long-term effect of dysphagia on nutritional status 12 ± 3 months later. Furthermore, to investigate the effect of a new rehabilitation method for dysphagia among individuals with swallowing dysfunction after ACSS.
Phase 2/3, randomized, double-blind, placebo-controlled, single-treatment, multicenter trial assessing the efficacy and safety of MYOBLOC for the treatment of upper limb spasticity in adults followed by an open-label extension safety trial.
Cervical spinal cord injury (SCI) results in hand and arm function impairments and decreased independence in performance of daily activities such as bathing, eating, dressing, writing, or typing. Recent approaches that involve the application of non-invasive brain stimulation have the potential to strengthen the remaining connections between the brain and the spinal cord for improved hand function. Combining brain stimulation with performing upper limb functional tasks may further increase the ability of individuals with tetraplegia to use their hands. The purpose of this study is to investigate if "random noise", a special type of brain stimulation that most people cannot feel, can be used to enhance upper limb function in individuals with spinal cord injury. Specifically, the investigators will examine if a combined treatment protocol of random noise and fine motor training results in greater improvements in motor and sensory hand function compared to fine motor training alone.
This study will use evaluate a hand therapy device training isolated finger control with engaging video gaming technology to facilitate hand and digit recovery in patients with acute stroke and cervical spinal cord injury. This study will randomize patients to either standard rehabilitation care with added study-related motor training or standard rehabilitation care alone.
The objective of this research study is to find the efficacy of trans-spinal electrical stimulation, a non-invasive neurostimulation method to modulate the functions of spinal cord neurocircuits, on improving upper-extremity functions such as reaching and grasping in individuals suffering with traumatic brain injury (TBI) or cervical spinal cord injury (SCI); and to find the physiological changes in the neuromuscular systems after this new intervention with high-resolution electrophysiology and biomedical imaging.
This project will evaluate the effects of intramuscular diaphragm stimulation (pacing) and test the hypothesis that diaphragm pacing enhances neuromuscular diaphragm activation and respiratory function in adults with cervical spinal cord injuries (C-SCIs). The investigators will test the hypothesis by recording activity of the diaphragm from intramuscular pacing electrodes and conduct respiratory assessments in adults with intramuscular diaphragm pacing electrodes following acute, traumatic C-SCIs.
The aim of this study is to determine the effects of rehabilitation on dexterous hand movements and cortical motor map changes in tetraplegic patients following nerve transfer surgery. The working hypothesis is that robot-assisted, intensive rehabilitation will support the return of hand and arm function and strengthen the cortical representations of targeted muscles. The investigators will assess this through TMS mapping and clinical measures of hand and arm function.