View clinical trials related to Cervical Dystonia.
Filter by:Cervical dystonia (CD) is the most common isolated dystonia in adults. Cervical dystonia symptoms can in most patients be managed well by botulinum toxin (BTX) injections, and supporting treatment measures. However, one-fifth to one-third of patients do not obtain sufficient relief from long-term BTX therapy, resulting in reduced quality of life. Deep brain stimulation (DBS) is a treatment method in which electrodes are surgically implanted permanently in the brain to modulate brain networks and function. In cervical dystonia, DBS of the postero-ventral part of the internal globus pallidus (GPi-DBS) has been established as an effective treatment for severe cases. However, the outcome of GPi-DBS in cervical dystonia has been reported mostly in some smaller series with up to 3 years follow-up. Thus, there is a lack of documentation of outcome of GPi-DBS in CD beyond 3 years of treatment and in larger patient materials. In this study the investigators will perform a long-term follow-up study of patients who were operated with a DBS-device targeting the GPi bilaterally, and who have been treated with chronic GPi-DBS for a minimum of 3 years. The investigators will measure the severity of symptom burden and quality of life with validated rating scales. The investigators will compare this DBS-treated cohort with an age- and gender matched group of CD patients who are receiving the standard treatment with botulinum neurotoxin (BoNT) injections and have been treated for at least 3 years as well. The investigators hypothesize that the DBS-treated group will have a significantly lower burden of symptoms at long-term follow-up than the BoNT treated group.
The purpose of this study is to investigate the effect of yoga delivered remotely on adults with dystonia. This work will have implications related to physical interventions symptom management and quality of life as well as implications related to the role of tele-therapy.
The first line of therapy for cervical dystonia patients is botulinum toxin injections, however injection parameter determination and optimization are challenging for physicians to do. In addition, some patients receiving this treatment long-term experience short duration of relief. Thus, Dysport (Ipsen Biopharmaceuticals), another BoNT-A formulation, may increase the duration of clinical benefit. The objective of this study is to compare the wearing off time of their original BoNT-A formulation (same injection parameters for at least 3 cycles) and the optimized treatment of Dysport (after 2 injection cycles). Ideally, the clinical benefits should last 2.5 - 3 months as injections are administered every 3 months. Conversion to Dysport will be conducted and optimization of Dysport dosing will be done using our sensor-technology assessment. It is unclear whether there are differences in the neurophysiological effects between BoNT-A formulations, such as blocking spinal afferent signals from proprioceptive mechanoreceptors of the injected muscles contributing to CD or the modulation of cortical activity [8]. The underlying pathophysiology of impaired motor control in CD is theorized to be caused by abnormal somatosensory processing that affects proprioceptive and tactile function [8]. By altering the processing of proprioceptive signals from the muscles to the cortical somatosensory-motor areas, proprioceptive perception can be modulated and possibly normalize activity of the somatosensory-motor areas in CD. Thus, it is hypothesized that BoNT-A may indirectly modulate these cortical pathways and Dysport may have a longer modulatory effect to produce a longer lasting clinical response.
To determine the efficacy and safety of Botulax® in treatment of cervical dystonia
Cervical dystonia (CD) is a common movement disorder. Despite the optimization of botulinum toxin injection (BoNT-A) parameters including muscle selection and dosing, a significant proportion of patients report low levels of satisfaction, and a few of them develop resistance to therapy. The only options for such patients would be invasive therapy such as pallidotomy or pallidal deep brain stimulation. Currently, studies are going on the effectiveness of noninvasive neurostimulation in different neurological disorders. Transcranial Direct Current Stimulation (tDCS) or transcranial pulsed current stimulation (tPCS) are known to be safe non-invasive intervention with almost no side effects that can be used to provide complementary treatment. To detect the dysfunctional regions five min resting state quantitative EEG (qEEG) eyes closed will be recorded and analyzed each time before and after noninvasive stimulation. The investigators will evaluate the efficacy of acute noninvasive stimulation in those CD patients who are already on 3 monthly BoNT-A therapy but the effect of BoNT-A is wearing off in 8 weeks. Kinematics (static and dynamic movements) of neck movements will be recorded using established technology before and after stimulation.
Many cervical dystonia (CD) patients are limited in their ability to travel to the clinic for follow-up in between injection visits. A telemedicine visit at the time of peak effectiveness of neurotoxin treatment may be valuable in informing the neurologist's choice of muscle selection and/or dose for the next injection visit. The primary objective of this study is to investigate both patient and physician satisfaction with the use of our telemedicine tool for this type of follow-up. After assessment of the subject, the neurologist will decide whether or not the telemedicine visit was informative to the upcoming injection visit. Subjects will answer questions at the end of the visit regarding their satisfaction with the follow-up and overall telemedicine communication. The principle investigator will complete a similar survey with additional questions about information gathered from the visit to assess the primary objective. A secure video communications platform will be used for the visit, which will occur 2-4 weeks after the patient's last neurotoxin injection (around the time of peak effectiveness). The investigating neurologist will remotely assess the patient and make notes for the next injection visit.
The purpose of this study is to test the hypothesis that the efficacy and safety of Meditoxin® are not inferior to Botox®'s in the treatment of Cervical Dystonia.
A 48-Week Prospective, Double-Blinded, Randomized, Cross-over design in Multicenter Study of, 250 unit of Abobotulinum Toxin Type A (Dysport) and 50 unit of Neubotulinum Toxin Type A (Neuronox) injection for Cervical Dystonia in patient diagnosed with cervical dystonia according to clinical diagnosis. It was designed to evaluate the efficacy, safety, tolerability, quality of life and the comparesion the improvement after treatment by of Abobotulinum Toxin Type A (Dysport) injection versus Neubotulinum Toxin Type A (Neuronox)Injection.
Phase 3, open-label, multi-center trial to evaluate the long-term safety, efficacy, and immunogenicity of up to four continuous treatment cycles of daxibotulinumtoxinA (DAXI) for injection.
This is a randomized, double-blind, placebo-controlled, parallel group, multi-center trial of two doses of daxibotulinumtoxinA (DAXI) for injection (high-dose; low-dose in adult subjects with isolated (primary) cervical dystonia (CD).