Clinical Trials Logo

Cervical Dystonia clinical trials

View clinical trials related to Cervical Dystonia.

Filter by:
  • Active, not recruiting  
  • Page 1

NCT ID: NCT05327985 Active, not recruiting - Cervical Dystonia Clinical Trials

Three-dimensional Analysis of Obliquus Capitis Inferior Muscle Function in the Rotatory Form of Cervical Dystonia

STOCI
Start date: April 8, 2022
Phase:
Study type: Observational

Cervical dystonia is the most common form of focal dystonia in adults (50-82%). It manifests itself by a abnormal attitude of the head, intermittent or permanent, due to involuntary contraction of the cervical muscles which appears or is accentuated on the occasion of voluntary movement and maintenance posture. The distribution of dystonic muscles is specific to each patient explaining the diversity of patterns encountered. The therapeutic management of DC is essentially local and symptomatic. It is based on the realization of injections of neuro botulinum toxin (BoNT) targeting target (dystonic) muscles responsible for involuntary movements or posture abnormal. Identifying the muscles involved is a step prerequisite for therapeutic intervention.The obliquus capitis inferior (OCI) also known as Lower Oblique belongs to the group of suboccipital muscles.It is the only suboccipital muscle that does not attach to the skull. Its unilateral contraction causes ipsilateral rotation of C1 therefore of the head. The length of the transverse process of the atlas gives it considerable rotary efficiency. It is described as the cephalic rotation starter muscle. It would perform the 30 first degrees of rotation. The rotation of the whole column cervical would then be continued by the synergistic action of the muscle contralateral sternocleidomatoid and Spl. ipsilateral. The level of joint complex C1-C2 the amplitude of rotation corresponds to approximately 50% of the total rotation of the cervical spine. In order to better understand the part played by the OCI muscle in the disorganization of posture and cervical movements in the axial plane (plane of rotation) in the rotary DC, the investigators want biomechanically analyze its function in pathological situation. The physiology of this muscle is richly documented in healthy subjects. But does this knowledge apply in DC? Acquisition of imagery by the "Cone Beam" or CBCT system (Cone Beam Computed Tomography) before and 5 weeks after the injection of BoNT, will allow the analysis of the displacement of each vertebrate.

NCT ID: NCT04270214 Active, not recruiting - Cervical Dystonia Clinical Trials

Conversion to Dysport in CD

Start date: June 1, 2020
Phase: N/A
Study type: Interventional

The first line of therapy for cervical dystonia patients is botulinum toxin injections, however injection parameter determination and optimization are challenging for physicians to do. In addition, some patients receiving this treatment long-term experience short duration of relief. Thus, Dysport (Ipsen Biopharmaceuticals), another BoNT-A formulation, may increase the duration of clinical benefit. The objective of this study is to compare the wearing off time of their original BoNT-A formulation (same injection parameters for at least 3 cycles) and the optimized treatment of Dysport (after 2 injection cycles). Ideally, the clinical benefits should last 2.5 - 3 months as injections are administered every 3 months. Conversion to Dysport will be conducted and optimization of Dysport dosing will be done using our sensor-technology assessment. It is unclear whether there are differences in the neurophysiological effects between BoNT-A formulations, such as blocking spinal afferent signals from proprioceptive mechanoreceptors of the injected muscles contributing to CD or the modulation of cortical activity [8]. The underlying pathophysiology of impaired motor control in CD is theorized to be caused by abnormal somatosensory processing that affects proprioceptive and tactile function [8]. By altering the processing of proprioceptive signals from the muscles to the cortical somatosensory-motor areas, proprioceptive perception can be modulated and possibly normalize activity of the somatosensory-motor areas in CD. Thus, it is hypothesized that BoNT-A may indirectly modulate these cortical pathways and Dysport may have a longer modulatory effect to produce a longer lasting clinical response.

NCT ID: NCT02662530 Active, not recruiting - Cervical Dystonia Clinical Trials

Clinical and Kinematic Assessment for Determination of Botox® Injection Parameters in Cervical Dystonia

Start date: January 2012
Phase: Phase 2
Study type: Interventional

This study investigates the use of a kinematic measurement device to quantify the abnormal head movements and postures in patients with cervical dystonia (CD) in order to individualize and optimize botulinum toxin type A (BoNT-A) injection therapy. A single sensor captures five degrees of freedom of the neck and head that distinguish which muscle(s) contribute to CD and the amount of BoNT-A to inject into these muscle(s). The efficacy, relief and improvements in social, occupation and function by injections will be investigated. The efficacy of BoNT-A therapy using either BoNT-A injection parameters from clinical-based assessments and kinematically-based assessments will be investigated in CD patients. Individuals clinically diagnosed with CD will be randomized for two treatment conditions: A) injection parameters from a kinematic assessment only, or B) injection parameters from a clinical assessment only.