Cerebral Palsy Clinical Trial
Official title:
Investıgatıon Of The Effectıveness Of The Mollıı Suıt In Chıldren Wıth Ambulatory Cerebral Palsy: A Double-Blınd Randomızed Controlled Study
Cerebral Palsy (CP) is the most common developmental disorder in childhood. Individuals' independence in daily living activities and participation in education, games, social and community activities are restricted. Technology applications in the field of rehabilitation are gaining momentum. EXOPULSE Mollii Suit method, one of the newest rehabilitation technology products, is a non-invasive neuromodulation approach with a garment that covers the whole body and electrodes placed inside. Designed to improve motor function by reducing spasticity and pain, the method is based on the principle of reciprocal inhibition, which occurs by stimulating the antagonist of a spastic muscle at low frequencies and intensities. Therefore, the aim of our study is to examine the effectiveness of the Mollii Suit application on gross and fine motor function, spasticity severity, balance, walking, selective motor control, postural control, daily living activities, quality of life, pain and sleep quality in individuals with ambulatory spastic CP.
Status | Recruiting |
Enrollment | 32 |
Est. completion date | November 5, 2025 |
Est. primary completion date | November 5, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 4 Years to 18 Years |
Eligibility | Inclusion Criteria: - Being a voluntary participant in the study, - Having a diagnosis of spastic CP, - Being between 1-3 on the Gross Motor Classification System (GMFCS), - Being between the ages of 4 and 18, - Being able to express pain and discomfort Exclusion Criteria: - Being between 4-5 on Gross Motor Classification System (GMFCS) - Having Botolunim Toxin A application before 3 months - Having a surgical intervention before 6 months - Having a shunt or an invasive medical pump (baclofen, insulin, etc.) |
Country | Name | City | State |
---|---|---|---|
Turkey | Gazi University | Ankara |
Lead Sponsor | Collaborator |
---|---|
Kastamonu University | Gazi University |
Turkey,
Arkkukangas M, Graff JH, Denison E. Evaluation of the electro-dress Mollii® to affect spasticity and motor function in children with cerebral palsy: Seven experimental single-case studies with an ABAB design. Cogent Eng. 2022;9. doi:10.1080/23311916.2022.2064587
Arkkukangas M, Hedberg Graff J, Denison E. Evaluation of the electro-dress Mollii® to affect spasticity and motor function in children with cerebral palsy: Seven experimental single-case studies with an ABAB design. 2022;9(1). doi:10.1080/23311916.2022.2064587
Atasavun Uysal S, Duger T, Elbasan B, Karabulut E, Toylan I. Reliability and Validity of The Cerebral Palsy Quality of Life Questionnaire in The Turkish Population. Percept Mot Skills. 2016 Feb;122(1):150-64. doi: 10.1177/0031512515625388. Epub 2016 Feb 1. — View Citation
Bakir E. Pediatric Pain Assessment and Tools: The Influence of Culture and Age on Pain Assessment. Published online 2017. doi:10.5336/nurses.2016-52467
Bartlett D, Birmingham T. Validity and reliability of a pediatric reach test. Pediatr Phys Ther. 2003 Summer;15(2):84-92. doi: 10.1097/01.PEP.0000067885.63909.5C. — View Citation
Booth ATC, Buizer AI, Meyns P, Oude Lansink ILB, Steenbrink F, van der Krogt MM. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018 Sep;60(9):866-883. doi: 10.1111/dmcn.13708. Epub 2018 Mar 7. — View Citation
Boyd RN, Kerr Graham H. Objective measurement of clinical findings in the use of botulinum toxin type A for the management of children with cerebral palsy. Europenn Journul qf Neurology. 1999;6:23-35. doi:10.1111/j.1468-1331.1999.tb00031.x
Chen Y, Fanchiang HD, Howard A. Effectiveness of Virtual Reality in Children With Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phys Ther. 2018 Jan 1;98(1):63-77. doi: 10.1093/ptj/pzx107. — View Citation
Dhote SN, Khatri PA, Ganvir SS. Reliability of "Modified timed up and go" test in children with cerebral palsy. J Pediatr Neurosci. 2012 May;7(2):96-100. doi: 10.4103/1817-1745.102564. — View Citation
Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of balance. J Gerontol. 1990 Nov;45(6):M192-7. doi: 10.1093/geronj/45.6.m192. — View Citation
Erwin AM, Bashore L. Subjective Sleep Measures in Children: Self-Report. Front Pediatr. 2017 Feb 13;5:22. doi: 10.3389/fped.2017.00022. eCollection 2017. — View Citation
Flodstrom C, Viklund Axelsson SA, Nordstrom B. A pilot study of the impact of the electro-suit Mollii(R) on body functions, activity, and participation in children with cerebral palsy. Assist Technol. 2022 Jul 4;34(4):411-417. doi: 10.1080/10400435.2020.1837288. Epub 2021 Mar 29. — View Citation
Fowler EG, Staudt LA, Greenberg MB, Oppenheim WL. Selective Control Assessment of the Lower Extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol. 2009 Aug;51(8):607-14. doi: 10.1111/j.1469-8749.2008.03186.x. Epub 2009 Feb 12. — View Citation
Hedin H, Wong C, Sjödén A. The effects of using an electrodress (Mollii®) to reduce spasticity and enhance functioning in children with cerebral palsy: a pilot study. https://doi.org/101080/2167916920201807602. 2020;24(3):134-143. doi:10.1080/21679169.2020.1807602
Heyrman L, Molenaers G, Desloovere K, Verheyden G, De Cat J, Monbaliu E, Feys H. A clinical tool to measure trunk control in children with cerebral palsy: the Trunk Control Measurement Scale. Res Dev Disabil. 2011 Nov-Dec;32(6):2624-35. doi: 10.1016/j.ridd.2011.06.012. Epub 2011 Jul 14. — View Citation
James S, Ziviani J, Boyd R. A systematic review of activities of daily living measures for children and adolescents with cerebral palsy. Dev Med Child Neurol. 2014 Mar;56(3):233-44. doi: 10.1111/dmcn.12226. Epub 2013 Aug 13. — View Citation
Jonasson LL, Sorbo A, Ertzgaard P, Sandsjo L. Patients' Experiences of Self-Administered Electrotherapy for Spasticity in Stroke and Cerebral Palsy: A Qualitative Study. J Rehabil Med. 2022 Feb 14;54:jrm00263. doi: 10.2340/jrm.v53.1131. — View Citation
Jones RA, Riethmuller A, Hesketh K, Trezise J, Batterham M, Okely AD. Promoting fundamental movement skill development and physical activity in early childhood settings: a cluster randomized controlled trial. Pediatr Exerc Sci. 2011 Nov;23(4):600-15. doi: 10.1123/pes.23.4.600. — View Citation
Kingsnorth S, Orava T, Provvidenza C, Adler E, Ami N, Gresley-Jones T, Mankad D, Slonim N, Fay L, Joachimides N, Hoffman A, Hung R, Fehlings D. Chronic Pain Assessment Tools for Cerebral Palsy: A Systematic Review. Pediatrics. 2015 Oct;136(4):e947-60. doi: 10.1542/peds.2015-0273. — View Citation
Miro J, Castarlenas E, de la Vega R, Sole E, Tome-Pires C, Jensen MP, Engel JM, Racine M. Validity of three rating scales for measuring pain intensity in youths with physical disabilities. Eur J Pain. 2016 Jan;20(1):130-7. doi: 10.1002/ejp.704. Epub 2015 Mar 31. — View Citation
Nordstrom B, Prellwitz M. A pilot study of children and parents experiences of the use of a new assistive device, the electro suit Mollii. Assist Technol. 2021 Sep 3;33(5):238-245. doi: 10.1080/10400435.2019.1579267. Epub 2019 Apr 4. — View Citation
Novak I, Hines M, Goldsmith S, Barclay R. Clinical prognostic messages from a systematic review on cerebral palsy. Pediatrics. 2012 Nov;130(5):e1285-312. doi: 10.1542/peds.2012-0924. Epub 2012 Oct 8. — View Citation
Novak I, Morgan C, Fahey M, Finch-Edmondson M, Galea C, Hines A, Langdon K, Namara MM, Paton MC, Popat H, Shore B, Khamis A, Stanton E, Finemore OP, Tricks A, Te Velde A, Dark L, Morton N, Badawi N. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020 Feb 21;20(2):3. doi: 10.1007/s11910-020-1022-z. — View Citation
Numanoglu A, Gunel MK. Intraobserver reliability of modified Ashworth scale and modified Tardieu scale in the assessment of spasticity in children with cerebral palsy. Acta Orthop Traumatol Turc. 2012;46(3):196-200. doi: 10.3944/aott.2012.2697. — View Citation
Ong AM, Hillman SJ, Robb JE. Reliability and validity of the Edinburgh Visual Gait Score for cerebral palsy when used by inexperienced observers. Gait Posture. 2008 Aug;28(2):323-6. doi: 10.1016/j.gaitpost.2008.01.008. Epub 2008 Mar 6. — View Citation
Ozal C, Ari G, Gunel MK. Inter-intra observer reliability and validity of the Turkish version of Trunk Control Measurement Scale in children with cerebral palsy. Acta Orthop Traumatol Turc. 2019 Sep;53(5):381-384. doi: 10.1016/j.aott.2019.04.013. Epub 2019 Jul 11. — View Citation
Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997 Apr;39(4):214-23. doi: 10.1111/j.1469-8749.1997.tb07414.x. — View Citation
Pennati GV, Bergling H, Carment L, Borg J, Lindberg PG, Palmcrantz S. Effects of 60 Min Electrostimulation With the EXOPULSE Mollii Suit on Objective Signs of Spasticity. Front Neurol. 2021 Oct 15;12:706610. doi: 10.3389/fneur.2021.706610. eCollection 2021. — View Citation
Rathinam C, Bateman A, Peirson J, Skinner J. Observational gait assessment tools in paediatrics--a systematic review. Gait Posture. 2014 Jun;40(2):279-85. doi: 10.1016/j.gaitpost.2014.04.187. Epub 2014 Apr 18. — View Citation
Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007 Feb;109:8-14. Erratum In: Dev Med Child Neurol. 2007 Jun;49(6): — View Citation
Rubio-Zarapuz A, Apolo-Arenas MD, Clemente-Suarez VJ, Costa AR, Pardo-Caballero D, Parraca JA. Acute Effects of a Session with The EXOPULSE Mollii Suit in a Fibromyalgia Patient: A Case Report. Int J Environ Res Public Health. 2023 Jan 26;20(3):2209. doi: 10.3390/ijerph20032209. — View Citation
Russell DJ, Avery LM, Rosenbaum PL, Raina PS, Walter SD, Palisano RJ. Improved scaling of the gross motor function measure for children with cerebral palsy: evidence of reliability and validity. Phys Ther. 2000 Sep;80(9):873-85. — View Citation
Salazar AP, Pagnussat AS, Pereira GA, Scopel G, Lukrafka JL. Neuromuscular electrical stimulation to improve gross motor function in children with cerebral palsy: a meta-analysis. Braz J Phys Ther. 2019 Sep-Oct;23(5):378-386. doi: 10.1016/j.bjpt.2019.01.006. Epub 2019 Jan 23. — View Citation
Serdaroglu A, Cansu A, Ozkan S, Tezcan S. Prevalence of cerebral palsy in Turkish children between the ages of 2 and 16 years. Dev Med Child Neurol. 2006 Jun;48(6):413-6. doi: 10.1017/S0012162206000910. — View Citation
van Hedel HJA, Severini G, Scarton A, O'Brien A, Reed T, Gaebler-Spira D, Egan T, Meyer-Heim A, Graser J, Chua K, Zutter D, Schweinfurther R, Moller JC, Paredes LP, Esquenazi A, Berweck S, Schroeder S, Warken B, Chan A, Devers A, Petioky J, Paik NJ, Kim WS, Bonato P, Boninger M; ARTIC network. Advanced Robotic Therapy Integrated Centers (ARTIC): an international collaboration facilitating the application of rehabilitation technologies. J Neuroeng Rehabil. 2018 Apr 6;15(1):30. doi: 10.1186/s12984-018-0366-y. Erratum In: J Neuroeng Rehabil. 2018 May 8;15(1):36. — View Citation
* Note: There are 35 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | The Edinburgh Visual Gait Score (EVGS) | Set up one of the cameras at the end of the 8m walkway track line to capture a coronal view. Place the second camera facing the center of the walkway to capture the sagittal view. The second camera should be set far enough away so as to capture the middle four meters of each trial. A patient should be able to complete two full strides in this distance. Adjust the cameras to be level with the height of the patient's greater trochanter. Record the patient walking back and forth along the walkway. The patient should be barefoot. Open the video recordings in any video player software and take screenshots of each gait cycle event from both coronal and sagittal views. There are 17 observational parameters that should be measured. Each parameter is scored based on either observed condition or measured joint angles. A three-point scale is used for each parameter. After scores have been assigned for each parameter, all scores should be summed. | 10-15 minutes | |
Secondary | The Gross Motor Function Measure (GMFM) | The Gross Motor Function Measure (GMFM) is an observational clinical tool designed to evaluate change in gross motor function in children with cerebral palsy. Items span the spectrum of gross motor activities in five dimensions: lying supine-prone (GMFM-A), sitting (GMFM-B), crawling (GMFM-C), standing (GMFM-D), walking, running and jumping (GMFM-E). GMFM is scored as fourpoint likert between "0" (cannot initiate) and "3" (completed) and calculated as percentage. The score of each section can be used alone or the total score can be calculated. The scale ranging from 0 to 100. | 45-60 minutes | |
Secondary | Tardieu Scale | It is a method that evaluates the velocity-sensitive nature of spasticity through passive movement. Passive stretching is applied slowly (R2) before and fast (R1) after the limb's fall rate against gravity. The difference between R2 and R1 indicates the severity of spasticity. The angle of full ROM (R2) is taken at a very slow speed (V1). The angle of muscle reaction (R1) is defined as the angle in which a catch or clonus is found during a quick stretch (V3). R1 is then subtracted from R2 and this represents the dynamic tone component of the muscle. | 10-15 minutes | |
Secondary | Trunk Control Measurement Scale (TCMS) | The TCMS scale assesses seated trunk control in three dimensions. The maximum score is 58 points where 20 points correspond to static balance, 28 to selective movement control, and 10 to the ability to perform dynamic reaching. The items are scored from 0 to 3, with 0 being the inability to perform the task and 3 being the complete performance of the item. It is an active test where the evaluator gives verbal instructions, demonstrates the movement visually or by guiding the participant, and then asks the participant to perform the test. The best attempt out of three is scored. | 15-20 minutes | |
Secondary | Modified Timed Up and Go Test | Modified TUG is version of TUG test , procedure for TUG test:The TUG test measure is the time taken, in seconds, by an individual to stand up from a standard arm chair, walk a distance of 3 m, turn, walk back to the chair, and sit down again. The subject wears his/her regular footwear. If participants usually use assistive devices such as cane or walker, they should use them during the test, but this should be indicated on the data collection form. No physical assistance is given. Total 3 trial repeats and average time score is recorded. | 3-5 minutes | |
Secondary | Modified Functional Reach Test | Performed with a leveled yardstick that has been mounted on the wall at the height of the patient's acromion level in the non-affected arm while sitting in a chair. Hips, knees and ankles positioned are at 90 degree of flexion, with feet positioned flat on the floor. The initial reach is measured with the patient sitting against the back of the chair with the upper-extremity flexed to 90 degrees, measure was taken from the distal end of the third metacarpal along the yardstick. Consists of three conditions over three trials: Sitting with the back to the wall and leaning right, left and Sitting with the unaffected side near the wall and leaning forward. | 3-5 minutes | |
Secondary | Selective Control Assessment of the Lower Extremity (SCALE) | The SCALE tool was designed for clinical administrationand scoring by healthcare professionals, to be used in lessthan 15 minutes without specialized equipment. The toolincludes 'Directions for Administration,' 'Instructions forGrading,' and a 'Score Sheet.' Hip, knee, ankle, subtalar,and toe joints are assessed bilaterally. Sitting andside-lying positions allow evaluation of patients who areunable to stand, permit observation of contralateral limbmovements, and enable the patient to visualize their limbin case of proprioceptive deficits. The following factorswere used to develop the assessment and grading criteria:(1) ability to move each joint selectively; (2) involuntarymovement at other joints including the contralateral limb;(3) ability to reciprocate movement; (4) speed of move-ment; and (5) generation of force as demonstrated byexcursion within the available range of motion. | 15 minutes | |
Secondary | Functional Independence Measure for Children (WeeFIM) | The WeeFIM consists of 18 items that document functional status. The WeeFIM was scored on a 7-level ordinal scale, ranging from: Independent/No Helper (7-6); Dependent/Helper (5); and Assistance 'Hands On' (4-1) Citation[22]. In addition to a total WeeFIM score, constructed from the sum of 18 independent item scores, there are also three sub-domain scores: Self-care and bowel and bladder management items, mobility and cognition. | 10-15 minutes | |
Secondary | The Cerebral Palsy Quality of Life Questionnaire (CP QOL) | The CP QOL uses a 9- point rating scale to measure how caregivers think their child feels (in general, 1 = very unhappy, 9 = very happy), with scores subsequently being converted to a scale ranging from 0 to 100. The primary caregiver QOL-Child form (children aged 4-12) contains 66 items in seven domains: Social well-being and Acceptance, Functioning, Participation and Physical Health, Emotional Well-being, Pain and Impact of Disability, Access to Services, and Family Health. | 15-20 minutes | |
Secondary | Pittsburgh Sleep Quality Index (PSQI) | PSQI questionnaire assesses sleep quality and disturbances over a 1-month time interval. Nineteen individual items generate seven "component" scores: Subjective sleep quality, sleep latency, sleep duration, habitual, sleep efficiency, SDs, use of sleeping medication, and daytime dysfunction. Each component score ranges from 0 (no difficulty) to 3 (severe difficulty). The component scores are summed to produce a global score (range, 0-21). A PSQI global score of =5 is considered to be suggestive of significant sleep disorder. | 10-15 minutes | |
Secondary | The Wong-Baker Faces Pain Rating Scale | The Wong-Baker Faces Pain Rating Scale is a method for someone to self-assess and effectively communicate the severity of pain they may be experiencing. The scale contains a series of six faces ranging from a happy face at 0 to indicate "no hurt" to a crying face at 10 to indicate "hurts worst." | 1-3 minutes |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05317234 -
Genetic Predisposition in Cerebral Palsy
|
N/A | |
Recruiting |
NCT05576948 -
Natural History of Cerebral Palsy Prospective Study
|
||
Completed |
NCT04119063 -
Evaluating Wearable Robotic Assistance on Gait
|
Early Phase 1 | |
Completed |
NCT03264339 -
The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy
|
N/A | |
Completed |
NCT05551364 -
Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy
|
N/A | |
Completed |
NCT03902886 -
Independent Walking Onset of Children With Cerebral Palsy
|
||
Recruiting |
NCT05571033 -
Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy
|
N/A | |
Not yet recruiting |
NCT04081675 -
Compliance in Children With Cerebral Palsy Supplied With AFOs
|
||
Completed |
NCT02167022 -
Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy
|
N/A | |
Completed |
NCT04012125 -
The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy
|
N/A | |
Enrolling by invitation |
NCT05619211 -
Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities
|
Phase 1 | |
Completed |
NCT04489498 -
Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
|
||
Completed |
NCT03677193 -
Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy
|
N/A | |
Recruiting |
NCT06450158 -
Robot-assisted Training in Children With CP
|
N/A | |
Completed |
NCT04093180 -
Intensive Neurorehabilitation for Cerebral Palsy
|
N/A | |
Completed |
NCT02909127 -
The Pediatric Eating Assessment Tool
|
||
Not yet recruiting |
NCT06377982 -
Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy
|
Phase 1 | |
Not yet recruiting |
NCT06007885 -
Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention.
|
N/A | |
Not yet recruiting |
NCT03183427 -
Corpus Callosum Size in Patients With Pineal Cyst
|
N/A | |
Active, not recruiting |
NCT03078621 -
Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy
|
Phase 1/Phase 2 |