Clinical Trials Logo

Clinical Trial Summary

The study design will consist of a cohort of adolescents and young adults with cerebral palsy (CP) that will undergo a gait training protocol. All participants will complete MEG baseline brain imaging measures of their sensorimotor cortical activity, MRI brain/spinal cord imaging (previous MRI or template brain may be substituted), neurophysiological tests of the spinal cord H-reflex, and a series of mobility clinical tests. After completing the baseline tests, the participants with CP will undergo the therapeutic gait training using either traditional physical therapy or utilizing a robotic exoskeleton. After completing all of the therapeutic gait training sessions, the participants will repeat the same assessments that were completed at baseline. The two groups will be compared based on the assessments for therapeutic outcomes.


Clinical Trial Description

Cerebral palsy (CP) results from a perinatal brain injury and is one of the most prevalent and costly pediatric neurologic conditions in the United States that often results in mobility deficits. The investigator's extensive experimental work has been focused on developing a therapeutic gait training protocol that will improve the long-term mobility of adolescents and young adults with CP. Robotic exoskeletons have gained recent attention in the therapeutic community as a high-tech option for assisting with over-ground mobility of various patient populations. The goal of this investigation is to take a fresh new approach on how robotic exoskeletons can be used in a therapeutic setting. As opposed to using them as a compensation tool, we are proposing to use them to perturb the legs to drive beneficial neuroplasticity in the key brain areas that govern the leg motor actions. Essentially, we predict that the neuroplastic changes promoted by the exoskeleton gait training protocol will lead to more robust clinical outcomes than what is seen by gait training alone. The aims of this study will: (1) determine if individuals with CP that undergo a robotic exoskeleton gait training protocol have larger mobility improvements compared to those that undergo gait training alone, (2) determine if individuals that undergo a robotic exoskeleton gait training protocol have larger improvements in key brain areas involved in motor planning and execution of the leg motor actions compared to those that undergo gait training alone, and (3) determine if individuals with CP that undergo a robotic exoskeleton gait training protocol have larger mobility improvements compared to those that undergo gait training alone. It is hypothesized after exoskeleton gait training participants will demonstrate substantially greater improvements in their 10-meter walk speed, one-minute walk test, and Functional Gait Assessment scores. Additionally, following exoskeleton training, the sensorimotor cortical activity will be significantly different from what is seen in those receiving gait training alone. Furthermore, the degree of brain activity changes will be related to the extent of the mobility improvements seen after completing the exoskeleton gait training protocol. Briefly, the study design consists of a cohort of adolescents and young adults with CP that will initially undergo MEG brain imaging, MRI spinal cord imaging, neurophysiological tests of the spinal cord interneuronal circuitry, and clinical mobility assessments. After completing the baseline tests, the participants will undergo either traditional therapeutic gait training or utilize the robotic exoskeleton gait therapy. Upon completion of the treatment program, participants will undergo the same baseline assessments. The results from the post therapy outcomes will be compared between the two groups: traditional gait therapy and robotic exoskeleton. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05158218
Study type Interventional
Source Father Flanagan's Boys' Home
Contact Max J Kurz, PhD
Phone 531-355-8916
Email max.kurz@boystown.org
Status Recruiting
Phase N/A
Start date December 2, 2021
Completion date December 31, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05317234 - Genetic Predisposition in Cerebral Palsy N/A
Recruiting NCT05576948 - Natural History of Cerebral Palsy Prospective Study
Completed NCT04119063 - Evaluating Wearable Robotic Assistance on Gait Early Phase 1
Completed NCT03264339 - The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy N/A
Completed NCT05551364 - Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy N/A
Completed NCT03902886 - Independent Walking Onset of Children With Cerebral Palsy
Recruiting NCT05571033 - Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy N/A
Not yet recruiting NCT04081675 - Compliance in Children With Cerebral Palsy Supplied With AFOs
Completed NCT02167022 - Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy N/A
Completed NCT04012125 - The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy N/A
Enrolling by invitation NCT05619211 - Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities Phase 1
Completed NCT04489498 - Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
Completed NCT03677193 - Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy N/A
Recruiting NCT06450158 - Robot-assisted Training in Children With CP N/A
Completed NCT04093180 - Intensive Neurorehabilitation for Cerebral Palsy N/A
Completed NCT02909127 - The Pediatric Eating Assessment Tool
Not yet recruiting NCT06377982 - Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy Phase 1
Not yet recruiting NCT06007885 - Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention. N/A
Not yet recruiting NCT03183427 - Corpus Callosum Size in Patients With Pineal Cyst N/A
Active, not recruiting NCT03078621 - Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy Phase 1/Phase 2