Cerebral Palsy Clinical Trial
Official title:
Augmenting Ankle Plantarflexor Function and Walking Capacity in Children With Cerebral Palsy
The first specific aim is to quantify improvement in ankle muscle function and functional mobility following targeted ankle resistance gait training in ambulatory children with cerebral palsy (CP). The primary hypothesis for the first aim is that targeted ankle resistance training will produce larger improvements in lower-extremity motor control, gait mechanics, and clinical measures of mobility assessed four- and twelve-weeks post intervention compared to standard physical therapy and standard gait training. The second specific aim is to determine the efficacy of adaptive ankle assistance to improve capacity and performance during sustained, high-intensity, and challenging tasks in ambulatory children with CP. The primary hypothesis for the second aim is that adaptive ankle assistance will result in significantly greater capacity and performance during the six-minute-walk-test and graded treadmill and stair stepping protocols compared to walking with ankle foot orthoses and walking with just shoes.
A child's ability to walk effectively is essential to their physical health and general well-being. Unfortunately, many children with cerebral palsy (CP), the most common cause of pediatric physical disability, have difficulty walking and completing higher-intensity ambulatory tasks. This leads to children with CP engaging in levels of habitual physical activity that are well below guidelines and those of children without disabilities, which in turn contributes to many secondary conditions, including metabolic dysfunction and cardiovascular disease. There is broad clinical consensus that plantarflexor dysfunction is a primary contributor to slow, inefficient, and crouched walking patterns in CP; individuals with CP need more effective treatments and mobility aids for plantarflexor dysfunction. To meet this need, this proposal aims to evaluate a holistic strategy to address impaired mobility from plantarflexor dysfunction in CP using a lightweight, dual-mode (assistive or resistive) wearable robotic device. This strategy combines two complementary techniques: (1) targeted ankle resistance for neuromuscular gait training that provides precision therapy to elicit long-term improvements in ankle muscle function, and (2) adaptive ankle assistance to make walking easier during sustained, high-intensity, or challenging tasks. Aim 1: Quantify improvement in ankle muscle function and functional mobility following targeted ankle resistance gait training in ambulatory children with CP Approach - Repeated Measures (RM) and randomized controlled trial: The investigators will compare functional outcomes following targeted ankle resistance training (2 visits/week for 12 weeks) vs. dose-matched standard physical therapy (RM) and vs. dose-matched standard treadmill training (randomized controlled trial). Primary Hypothesis: Targeted ankle resistance training will produce larger improvements in lower-extremity motor control, gait mechanics, and clinical measures of mobility assessed four- and twelve-weeks post intervention compared to the control conditions. Aim 2: Determine the efficacy of adaptive ankle assistance to improve capacity and performance during sustained, high-intensity, and challenging tasks in ambulatory children with CP Approach - Repeated Measures: The investigators will compare task capacity and performance with adaptive ankle assistance vs. standard ankle foot orthoses and vs. shod (no ankle aid) during (a) 6-minute-walk-test, (b) extended-duration over-ground walking (sustained), (c) graded treadmill (high-intensity), and (d) stair-stepping (challenging) protocols. Task capacity and performance will be measured by duration, metabolic cost, speed, and stride length, as applicable. Primary Hypothesis: Adaptive ankle assistance will result in significantly greater capacity and performance compared to the control conditions. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05317234 -
Genetic Predisposition in Cerebral Palsy
|
N/A | |
Recruiting |
NCT05576948 -
Natural History of Cerebral Palsy Prospective Study
|
||
Completed |
NCT04119063 -
Evaluating Wearable Robotic Assistance on Gait
|
Early Phase 1 | |
Completed |
NCT03264339 -
The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy
|
N/A | |
Completed |
NCT05551364 -
Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy
|
N/A | |
Completed |
NCT03902886 -
Independent Walking Onset of Children With Cerebral Palsy
|
||
Recruiting |
NCT05571033 -
Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy
|
N/A | |
Not yet recruiting |
NCT04081675 -
Compliance in Children With Cerebral Palsy Supplied With AFOs
|
||
Completed |
NCT02167022 -
Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy
|
N/A | |
Completed |
NCT04012125 -
The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy
|
N/A | |
Enrolling by invitation |
NCT05619211 -
Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities
|
Phase 1 | |
Completed |
NCT04489498 -
Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
|
||
Completed |
NCT03677193 -
Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy
|
N/A | |
Recruiting |
NCT06450158 -
Robot-assisted Training in Children With CP
|
N/A | |
Completed |
NCT04093180 -
Intensive Neurorehabilitation for Cerebral Palsy
|
N/A | |
Completed |
NCT02909127 -
The Pediatric Eating Assessment Tool
|
||
Not yet recruiting |
NCT06377982 -
Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy
|
Phase 1 | |
Not yet recruiting |
NCT06007885 -
Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention.
|
N/A | |
Not yet recruiting |
NCT03183427 -
Corpus Callosum Size in Patients With Pineal Cyst
|
N/A | |
Active, not recruiting |
NCT03078621 -
Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy
|
Phase 1/Phase 2 |