Cerebral Palsy Clinical Trial
— CP FES WalkingOfficial title:
Functional Electrical Stimulation to Improve Crouch Gait in Cerebral Palsy
NCT number | NCT04209257 |
Other study ID # | 71011-PHI |
Secondary ID | |
Status | Completed |
Phase | N/A |
First received | |
Last updated | |
Start date | January 2012 |
Est. completion date | December 2016 |
Verified date | December 2019 |
Source | Shriners Hospitals for Children |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The overall goal of the proposed work is to develop and to assess the feasibility of using functional electrical stimulation (FES) system to improve crouch gait in individuals with cerebral palsy that may prevent the typical downward spiral of walking function decline in individuals with CP that occurs from adolescence into adulthood.
Status | Completed |
Enrollment | 13 |
Est. completion date | December 2016 |
Est. primary completion date | December 2016 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 10 Years to 18 Years |
Eligibility |
Inclusion Criteria: - Age 10-18 - Spastic CP (di-, tetra-, or triplegia) - Levels I-II GMFCS classification - Sufficient covering of the femoral head in the acetabulum (migration % < 40) - Mild crouch gait (minimum knee flexion 21-40o during stance) - Potential to gain > 20 degrees knee extension improvement in stance phase - Minimum of 0o ankle dorsiflexion passive range of motion (PROM) - Visual, perceptual, cognitive, and communication skills to follow multiple step commands for attending to exercise and data collection - Seizure-free or well controlled seizures Exclusion Criteria: - Athetoid, ataxic, or hemiplegic CP - Significant scoliosis (primary curve > 40°) - Spinal fusions extending into the pelvis - Severe tactile hypersensitivity - Joint instability or dislocation in lower extremity - Lower extremity surgery or fractures in the past year - Botox injections to Lower extremity in the past 6 months - Implanted medical device contraindicated with application of FES - Severe spasticity in Lower extremity (Mod Ashworth 4) - Lower extremity joint pain during walking - Hx of pulmonary disease limiting exercise tolerance or Hx of cardiac disease - Severely limited range of motion / contractures (>15o knee flex or >15o hip flex contractures) - Pregnancy |
Country | Name | City | State |
---|---|---|---|
United States | Shriners Hospitals for Children, Philadelphia | Philadelphia | Pennsylvania |
Lead Sponsor | Collaborator |
---|---|
Shriners Hospitals for Children |
United States,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in the Muscle Tone | We use the Modified Ashworth Scale to measure resistance to passive movement about a joint with varying degree of velocity (Muscle tone/spasticity). Score ranges from 0-4, with 6 choices where score of 0 means no increase in tone and score of 4 means rigid limb with no flexion or extension. Our training approach using repetitive electrical stimulation may also lower spasticity, which can also facilitate improved functional mobility. | Change from the baseline Modified Ashworth Scale at 14 weeks (post training) | |
Primary | Change in the Muscle Tone | We use the Modified Ashworth Scale to measure resistance to passive movement about a joint with varying degree of velocity (Muscle tone/spasticity). Score ranges from 0-4, with 6 choices where score of 0 means no increase in tone and score of 4 means rigid limb with no flexion or extension. Our training approach using repetitive electrical stimulation may also lower spasticity, which can also facilitate improved functional mobility. | Change from the baseline Modified Ashworth Scale at 27 weeks (Follow up) | |
Primary | Metabolic Cost of Walking | Walking Energy Expenditure will be measured via indirect calorimetry at the subject's self-selected walking speed. The subject will walk on the treadmill while breathing into a VMax gas-dilution SensorMedics metabolic measurement system. The subject will warm up at a slow walking speed for 3 minutes, walk for approximately 5 minutes at the subject's self-selected walking speed until steady state is reached, and then sit for a 3-minute cool down. The metabolic cost of walking is computed over the 5-minute walking period. | Change from the baseline Metabolic Cost of Walking at 14 weeks (post training) | |
Primary | Metabolic Cost of Walking | Walking Energy Expenditure will be measured via indirect calorimetry at the subject's self-selected walking speed. The subject will walk on the treadmill while breathing into a VMax gas-dilution SensorMedics metabolic measurement system. The subject will warm up at a slow walking speed for 3 minutes, walk for approximately 5 minutes at the subject's self-selected walking speed until steady state is reached, and then sit for a 3-minute cool down. The metabolic cost of walking is computed over the 5-minute walking period. | Change from the baseline Metabolic Cost of Walking at 27 weeks (Follow up) | |
Primary | Change in the Walking Speed | Walking Speed is measured via the 10-meter walk test. This time taken to complete the task is used to compute the average walking speed referred to as "self-selected" walking speed. | Change from the baseline Walking speed at 14 weeks (Post training) | |
Primary | Change in the Walking Speed | Walking Speed is measured via the 10-meter walk test. This time taken to complete the task is used to compute the average walking speed referred to as "self-selected" walking speed. | Change from the baseline Walking speed at 27 weeks (Follow up) | |
Primary | Change in the Walking Distance | Walking distance (in a fixed period of time) is an indicator of endurance. Walking Distance is measured via the 6-minute walk test. Improved motor learning and gait biomechanics from the training methods would improve gait efficiency and thus, endurance. | Change from the baseline Walking Distance at 14 weeks (Post training) | |
Primary | Change in the Walking Distance | Walking distance (in a fixed period of time) is an indicator of endurance. Walking Distance is measured via the 6-minute walk test. Improved motor learning and gait biomechanics from the training methods would improve gait efficiency and thus, endurance. | Change from the baseline Walking Distance at 27 weeks (Follow up) | |
Primary | Change in Gross Motor Function Measure | Gross Motor Function will be assessed via sections D and E of the Gross Motor Function Measure (GMFM) test. This test is designed to evaluate changes in gross motor function over time of children with CP. | Change from the baseline GMFM score at 14 weeks (Post training) | |
Primary | Change in Gross Motor Function Measure | Gross Motor Function will be assessed via sections D and E of the Gross Motor Function Measure (GMFM) test. This test is designed to evaluate changes in gross motor function over time of children with CP. | Change from the baseline GMFM score at 27 weeks (Follow up) | |
Primary | Change in the Timed Up-And-Go (TUG time) | Timed Up-And-Go (TUG) is a measure designed to assess functional mobility and balance. The subjects will be seated on an adjustable bench such that the knees and angles are at 90 degrees. Subjects will be timed as they rise, walk 3 meters, turn around, return to the bench and sit down again.assessing the impact of anticipated improvements in motor control and gait biomechanics. | Change from the baseline Time Up and Go time at 14 weeks (Post training) | |
Primary | Change in the Timed Up-And-Go (TUG time) | Timed Up-And-Go (TUG) is a measure designed to assess functional mobility and balance. The subjects will be seated on an adjustable bench such that the knees and angles are at 90 degrees. Subjects will be timed as they rise, walk 3 meters, turn around, return to the bench and sit down again.assessing the impact of anticipated improvements in motor control and gait biomechanics. | Change from the baseline Time Up and Go time at 27 weeks (Follow up) | |
Primary | Change in the Mini Balance Evaluation Systems Test Score | Balance Evaluation Systems Test (BESTest) is a measure of balance function. The BESTest will allow for assessing the impact of anticipated improvements in motor control and gait biomechanics from training on balance. The test has a maximum score of 28 points and minimum score of zero. Score of 28 means highest level of function and 0 means lowest level of function. | Change from the baseline Mini BESTest score at 14 weeks (Post training) | |
Primary | Change in the Mini Balance Evaluation Systems Test Score | Balance Evaluation Systems Test (BESTest) is a measure of balance function. The BESTest will allow for assessing the impact of anticipated improvements in motor control and gait biomechanics from training on balance. The test has a maximum score of 28 points and minimum score of zero. Score of 28 means highest level of function and 0 means lowest level of function. | Change from the baseline Mini BESTest score at 27 weeks (Follow up) | |
Primary | Change in the Electromyography | Muscle activation timing measured with Electromyography during gait analysis allows for mechanistic study of anticipated improvements in motor control and gait as well as comparison to typical norms. | Change from the baseline Muscle activation at 14 weeks (Post training) | |
Primary | Change in the Electromyography | Muscle activation timing measured with Electromyography during gait analysis allows for mechanistic study of anticipated improvements in motor control and gait as well as comparison to typical norms. | Change from the baseline Muscle activation at 27 weeks (Follow up) | |
Primary | Changes in the Activities-Specific Balance Scale Score | The Activities-Specific Balance Scale (ABC Scale) survey allows measurement of perceived functional mobility by assessing balance confidence to perform daily activities of living without falling. 16 items are rated on a rating scale with range of 0-100. Score of 0 means no confidence and 100 means complete confidence. Average score of 16 items is the overall score. Such measures will assess the impact of anticipated improvements in motor control and gait bio-mechanics from training. | Change from the baseline ABC scale score at 14 weeks (Post training) | |
Primary | Changes in the Activities-Specific Balance Scale Score | The Activities-Specific Balance Scale (ABC Scale) survey allows measurement of perceived functional mobility by assessing balance confidence to perform daily activities of living without falling. 16 items are rated on a rating scale with range of 0-100. Score of 0 means no confidence and 100 means complete confidence. Average score of 16 items is the overall score. Such measures will assess the impact of anticipated improvements in motor control and gait bio-mechanics from training. | Change from the baseline ABC scale score at 27 weeks (Follow up) | |
Primary | Changes in the Participation in Life Events survey score | Participation in life events (LIFE-H) survey measures how much a person is engaging or participating with their peers and community. Weighted score ranges between 0-10 with 0 score being no accomplishment and 10 means complete accomplishment. Such measures will assess the impact of anticipated improvements in motor control and gait biomechanics from training. | Change from the baseline LIFE-H scale score at 14 weeks (Post training) | |
Primary | Changes in the Participation in Life Events survey score | Participation in life events (LIFE-H) survey measures how much a person is engaging or participating with their peers and community. Weighted score ranges between 0-10 with 0 score being no accomplishment and 10 means complete accomplishment. Such measures will assess the impact of anticipated improvements in motor control and gait biomechanics from training. | Change from the baseline LIFE-H scale score at 27 weeks (Follow up) | |
Primary | Change in Piers-Harris Children's Self-Concept Scale score | Self-Perception will be measured via the Piers-Harris Children's Self-Concept Scale, Second Edition (Piers-Harris 2). This test is designed to measure self-concept as reported by the individual. It measures physical and emotional well-being and self-esteem and will allow assessment of the impact of anticipated improvements in motor control and gait biomechanics from training. The tool consists of 60 items that require the respondent to respond by circling "Yes" or "No." Raw scores are converted to standardized t-scores (mean = 50, standard deviation = 10) and percentile ranks. T-Score ranges for the total scale are: <29T is very low, 30T-39T is low, 40T-44T is low average, 45T-55T average, 56T-59T- is high average, 60T-69T is high and > 70T is very high. For the six subscales T-Score ranges < 29T is very low, 30T-39T is low, 40T-44T is low average, 45T-55T is average and > 56T is above average. | Change from the baseline Piers-Harris Children's Self-Concept scale score at 14 weeks (Post training) | |
Primary | Change in Piers-Harris Children's Self-Concept Scale score | Self-Perception will be measured via the Piers-Harris Children's Self-Concept Scale, Second Edition (Piers-Harris 2). This test is designed to measure self-concept as reported by the individual. It measures physical and emotional well-being and self-esteem and will allow assessment of the impact of anticipated improvements in motor control and gait biomechanics from training. The tool consists of 60 items that require the respondent to respond by circling "Yes" or "No." Raw scores are converted to standardized t-scores (mean = 50, standard deviation = 10) and percentile ranks. T-Score ranges for the total scale are: <29T is very low, 30T-39T is low, 40T-44T is low average, 45T-55T average, 56T-59T- is high average, 60T-69T is high and > 70T is very high. For the six subscales T-Score ranges < 29T is very low, 30T-39T is low, 40T-44T is low average, 45T-55T is average and > 56T is above average. | Change from the baseline Piers-Harris Children's Self-Concept scale score at 27 weeks (Follow up) | |
Primary | Change in Joint angles | Hip, Knee and Ankle Joint Angles (Kinematic data) are measured using Instrumented gait analysis (Motion capture analysis system) during seven different gait phases. | Change from the baseline Joint angles at 14 weeks (Post training) | |
Primary | Change in Joint angles | Hip, Knee and Ankle Joint Angles (Kinematic data) are measured using Instrumented gait analysis (Motion capture analysis system) during seven different gait phases. | Change from the baseline joint angles at 27 weeks (Follow up) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05317234 -
Genetic Predisposition in Cerebral Palsy
|
N/A | |
Recruiting |
NCT05576948 -
Natural History of Cerebral Palsy Prospective Study
|
||
Completed |
NCT04119063 -
Evaluating Wearable Robotic Assistance on Gait
|
Early Phase 1 | |
Completed |
NCT03264339 -
The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy
|
N/A | |
Completed |
NCT05551364 -
Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy
|
N/A | |
Completed |
NCT03902886 -
Independent Walking Onset of Children With Cerebral Palsy
|
||
Recruiting |
NCT05571033 -
Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy
|
N/A | |
Not yet recruiting |
NCT04081675 -
Compliance in Children With Cerebral Palsy Supplied With AFOs
|
||
Completed |
NCT02167022 -
Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy
|
N/A | |
Completed |
NCT04012125 -
The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy
|
N/A | |
Enrolling by invitation |
NCT05619211 -
Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities
|
Phase 1 | |
Completed |
NCT04489498 -
Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
|
||
Completed |
NCT03677193 -
Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy
|
N/A | |
Recruiting |
NCT06450158 -
Robot-assisted Training in Children With CP
|
N/A | |
Completed |
NCT04093180 -
Intensive Neurorehabilitation for Cerebral Palsy
|
N/A | |
Completed |
NCT02909127 -
The Pediatric Eating Assessment Tool
|
||
Not yet recruiting |
NCT06377982 -
Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy
|
Phase 1 | |
Not yet recruiting |
NCT06007885 -
Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention.
|
N/A | |
Not yet recruiting |
NCT03183427 -
Corpus Callosum Size in Patients With Pineal Cyst
|
N/A | |
Active, not recruiting |
NCT03078621 -
Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy
|
Phase 1/Phase 2 |