Cerebral Palsy Clinical Trial
Official title:
Exploration of the Role of Subtalar Joint Morphology in the Development of Foot Deformity in Cerebral Palsy
NCT number | NCT04149301 |
Other study ID # | RL1795 |
Secondary ID | |
Status | Completed |
Phase | |
First received | |
Last updated | |
Start date | April 1, 2022 |
Est. completion date | December 31, 2023 |
Verified date | February 2024 |
Source | Robert Jones and Agnes Hunt Orthopaedic and District NHS Trust |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Observational |
Cerebral palsy (CP) is a major cause of disability. Many children with CP develop foot deformities as they grow and these can become painful, adversely affecting their quality of life. The research team has previously studied foot morphology and biomechanics, including analysis of the subtalar joint and has successfully located the joint axis from MRI scans. In this project 25 children will be recruited (15 children with CP and 10 unimpaired control subjects). Each child will attend for a single visit, when they will undergo an MRI scan (with the foot loaded and unloaded) to measure the morphology of the ankle and foot, in particular the subtalar axis alignment. This has not been done before in CP. Each child will have an instrumented gait analysis and musculoskeletal modelling techniques will be used to study the biomechanical action of the external ground reaction force and internal muscle forces. The potential of these forces to rotate the subtalar joint and deform the foot will be assessed, resulting in new insights into potential mechanisms of foot deformity. The children will then be categorised to identify those most at risk, leading to personalised screening measures and treatment strategies in the future.
Status | Completed |
Enrollment | 23 |
Est. completion date | December 31, 2023 |
Est. primary completion date | November 1, 2023 |
Accepts healthy volunteers | |
Gender | All |
Age group | 7 Years to 16 Years |
Eligibility | Inclusion Criteria: - Able to walk independently (for CP children GMFCS level 1 or 2) - Able to understand and comply with experimental protocols Exclusion Criteria: - Any contraindications to MRI scanning eg pronounced startle reflexes or metal implants. - Any orthopaedic surgery in the last 6 months, or any previous bony surgery to the ankle of foot. |
Country | Name | City | State |
---|---|---|---|
United Kingdom | ORLAU, RJAH Orthopaedic Hospital | Oswestry | Shropshire |
Lead Sponsor | Collaborator |
---|---|
Robert Jones and Agnes Hunt Orthopaedic and District NHS Trust | Imperial College London, Keele University, University of Aberdeen, University of Oxford |
United Kingdom,
Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50. doi: 10.1109/TBME.2007.901024. — View Citation
Modenese L, Montefiori E, Wang A, Wesarg S, Viceconti M, Mazza C. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling. J Biomech. 2018 May 17;73:108-118. doi: 10.1016/j.jbiomech.2018.03.039. Epub 2018 Mar 30. — View Citation
Montefiori E, Modenese L, Di Marco R, Magni-Manzoni S, Malattia C, Petrarca M, Ronchetti A, de Horatio LT, van Dijkhuizen P, Wang A, Wesarg S, Viceconti M, Mazza C; MD-PAEDIGREE Consortium. An image-based kinematic model of the tibiotalar and subtalar joints and its application to gait analysis in children with Juvenile Idiopathic Arthritis. J Biomech. 2019 Mar 6;85:27-36. doi: 10.1016/j.jbiomech.2018.12.041. Epub 2019 Jan 9. — View Citation
O'Connell PA, D'Souza L, Dudeney S, Stephens M. Foot deformities in children with cerebral palsy. J Pediatr Orthop. 1998 Nov-Dec;18(6):743-7. — View Citation
Oskoui M, Coutinho F, Dykeman J, Jette N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013 Jun;55(6):509-19. doi: 10.1111/dmcn.12080. Epub 2013 Jan 24. Erratum In: Dev Med Child Neurol. 2016 Mar;58(3):316. — View Citation
Parkinson KN, Dickinson HO, Arnaud C, Lyons A, Colver A; SPARCLE group. Pain in young people aged 13 to 17 years with cerebral palsy: cross-sectional, multicentre European study. Arch Dis Child. 2013 Jun;98(6):434-40. doi: 10.1136/archdischild-2012-303482. Epub 2013 Apr 20. — View Citation
Parr WC, Chatterjee HJ, Soligo C. Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions. J Biomech. 2012 Apr 5;45(6):1103-7. doi: 10.1016/j.jbiomech.2012.01.011. Epub 2012 Jan 28. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | External loading on the subtalar joint (Measured as a moment in units of Nm) | This results from combining the gait analysis data (angles and forces) with the morphology from the MRI scans. | At baseline | |
Primary | Internal loading on the subtalar joint (Measured as a moment in units of Nm) | This results from combining the gait analysis data (angles and forces) with the morphology from the MRI scans, through a process of optimisation to distribute internal muscle forces. | At baseline |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05317234 -
Genetic Predisposition in Cerebral Palsy
|
N/A | |
Recruiting |
NCT05576948 -
Natural History of Cerebral Palsy Prospective Study
|
||
Completed |
NCT04119063 -
Evaluating Wearable Robotic Assistance on Gait
|
Early Phase 1 | |
Completed |
NCT03264339 -
The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy
|
N/A | |
Completed |
NCT05551364 -
Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy
|
N/A | |
Completed |
NCT03902886 -
Independent Walking Onset of Children With Cerebral Palsy
|
||
Recruiting |
NCT05571033 -
Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy
|
N/A | |
Not yet recruiting |
NCT04081675 -
Compliance in Children With Cerebral Palsy Supplied With AFOs
|
||
Completed |
NCT02167022 -
Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy
|
N/A | |
Completed |
NCT04012125 -
The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy
|
N/A | |
Enrolling by invitation |
NCT05619211 -
Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities
|
Phase 1 | |
Completed |
NCT04489498 -
Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
|
||
Completed |
NCT03677193 -
Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy
|
N/A | |
Recruiting |
NCT06450158 -
Robot-assisted Training in Children With CP
|
N/A | |
Completed |
NCT04093180 -
Intensive Neurorehabilitation for Cerebral Palsy
|
N/A | |
Completed |
NCT02909127 -
The Pediatric Eating Assessment Tool
|
||
Not yet recruiting |
NCT06377982 -
Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy
|
Phase 1 | |
Not yet recruiting |
NCT06007885 -
Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention.
|
N/A | |
Not yet recruiting |
NCT03183427 -
Corpus Callosum Size in Patients With Pineal Cyst
|
N/A | |
Active, not recruiting |
NCT03078621 -
Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy
|
Phase 1/Phase 2 |