Cerebral Palsy Clinical Trial
Official title:
Effects of Single-session Transcranial Direct Current Stimulation in Children With Cerebral Palsy
Verified date | March 2021 |
Source | University of Minnesota |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The goal of this study is to characterize individual responses to a single application of transcranial direct current stimulation (tDCS) in children with unilateral cerebral palsy (UCP), and to test which electrode configuration produces changes in brain excitability and motor function. Participants with UCP, ages 7-21 years, will be assigned to one of four tDCS groups. Using single-pulse transcranial magnetic stimulation, the investigators will assess cortical excitability before and at regular intervals up to 1 hour following tDCS. The knowledge gained from this study will advance the field through more targeted approaches of neuromodulatory techniques in this population and others, using individual characteristics to guide optimal treatment
Status | Completed |
Enrollment | 20 |
Est. completion date | February 21, 2020 |
Est. primary completion date | February 21, 2020 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 7 Years to 21 Years |
Eligibility | Inclusion Criteria (for all participants): - Ages 7-21 - Able to follow two-step commands. - Presence of an MEP in the non-lesioned hemisphere Exclusion Criteria (for all participants): - Evidence of seizure within 2 years - Other neurological or metabolic conditions - Is pregnant (females only) - Presence of indwelling metal in the head (e.g. aneurysm clip) or medical device. Inclusion Criteria (for participants with cerebral palsy): - Clinical diagnosis of unilateral cerebral palsy - Radiological evidence of stroke or periventricular leukomalacia Exclusion Criteria(for participants with cerebral palsy): - Treatment with injectable agents (e.g. Botox) for spasticity management within 2 months |
Country | Name | City | State |
---|---|---|---|
United States | Samuel Nemanich | Minneapolis | Minnesota |
Lead Sponsor | Collaborator |
---|---|
University of Minnesota | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) |
United States,
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017 Sep;128(9):1774-1809. doi: 10.1016/j.clinph.2017.06.001. Epub 2017 Jun 19. Review. — View Citation
Antal A, Terney D, Poreisz C, Paulus W. Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. Eur J Neurosci. 2007 Nov;26(9):2687-91. Epub 2007 Oct 26. — View Citation
Bikson M, Grossman P, Zannou AL, Kronberg G, Truong D, Boggio P, Brunoni AR, Charvet L, Fregni F, Fritsch B, Gillick B, Hamilton RH, Hampstead BM, Kirton A, Knotkova H, Liebetanz D, Liu A, Loo C, Nitsche MA, Reis J, Richardson JD, Rotenberg A, Turkeltaub PE, Woods AJ. Response to letter to the editor: Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimul. 2017 Sep - Oct;10(5):986-987. doi: 10.1016/j.brs.2017.06.007. Epub 2017 Jul 12. — View Citation
Bolognini N, Vallar G, Casati C, Latif LA, El-Nazer R, Williams J, Banco E, Macea DD, Tesio L, Chessa C, Fregni F. Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabil Neural Repair. 2011 Nov-Dec;25(9):819-29. doi: 10.1177/1545968311411056. Epub 2011 Jul 29. — View Citation
Christensen D, Van Naarden Braun K, Doernberg NS, Maenner MJ, Arneson CL, Durkin MS, Benedict RE, Kirby RS, Wingate MS, Fitzgerald R, Yeargin-Allsopp M. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning - Autism and Developmental Disabilities Monitoring Network, USA, 2008. Dev Med Child Neurol. 2014 Jan;56(1):59-65. doi: 10.1111/dmcn.12268. Epub 2013 Oct 1. — View Citation
Ciechanski P, Kirton A. Transcranial Direct-Current Stimulation Can Enhance Motor Learning in Children. Cereb Cortex. 2017 May 1;27(5):2758-2767. doi: 10.1093/cercor/bhw114. — View Citation
Collange Grecco LA, de Almeida Carvalho Duarte N, Mendonça ME, Galli M, Fregni F, Oliveira CS. Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial. Clin Rehabil. 2015 Dec;29(12):1212-23. doi: 10.1177/0269215514566997. Epub 2015 Jan 20. — View Citation
Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen LG. Transcallosal inhibition in chronic subcortical stroke. Neuroimage. 2005 Dec;28(4):940-6. Epub 2005 Aug 9. — View Citation
Figlewski K, Blicher JU, Mortensen J, Severinsen KE, Nielsen JF, Andersen H. Transcranial Direct Current Stimulation Potentiates Improvements in Functional Ability in Patients With Chronic Stroke Receiving Constraint-Induced Movement Therapy. Stroke. 2017 Jan;48(1):229-232. doi: 10.1161/STROKEAHA.116.014988. Epub 2016 Nov 29. — View Citation
Giacobbe V, Krebs HI, Volpe BT, Pascual-Leone A, Rykman A, Zeiarati G, Fregni F, Dipietro L, Thickbroom GW, Edwards DJ. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing. NeuroRehabilitation. 2013;33(1):49-56. doi: 10.3233/NRE-130927. — View Citation
Gillick B, Rich T, Nemanich S, Chen CY, Menk J, Mueller B, Chen M, Ward M, Meekins G, Feyma T, Krach L, Rudser K. Transcranial direct current stimulation and constraint-induced therapy in cerebral palsy: A randomized, blinded, sham-controlled clinical trial. Eur J Paediatr Neurol. 2018 May;22(3):358-368. doi: 10.1016/j.ejpn.2018.02.001. Epub 2018 Feb 11. — View Citation
Gillick BT, Feyma T, Menk J, Usset M, Vaith A, Wood TJ, Worthington R, Krach LE. Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: randomized controlled preliminary study. Phys Ther. 2015 Mar;95(3):337-49. doi: 10.2522/ptj.20130565. Epub 2014 Nov 20. — View Citation
Gillick BT, Krach LE, Feyma T, Rich TL, Moberg K, Thomas W, Cassidy JM, Menk J, Carey JR. Primed low-frequency repetitive transcranial magnetic stimulation and constraint-induced movement therapy in pediatric hemiparesis: a randomized controlled trial. Dev Med Child Neurol. 2014 Jan;56(1):44-52. doi: 10.1111/dmcn.12243. Epub 2013 Aug 21. — View Citation
Kirton A, Chen R, Friefeld S, Gunraj C, Pontigon AM, Deveber G. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial. Lancet Neurol. 2008 Jun;7(6):507-13. doi: 10.1016/S1474-4422(08)70096-6. Epub 2008 May 1. — View Citation
Kirton A, Ciechanski P, Zewdie E, Andersen J, Nettel-Aguirre A, Carlson H, Carsolio L, Herrero M, Quigley J, Mineyko A, Hodge J, Hill M. Transcranial direct current stimulation for children with perinatal stroke and hemiparesis. Neurology. 2017 Jan 17;88(3):259-267. doi: 10.1212/WNL.0000000000003518. Epub 2016 Dec 7. — View Citation
Kirton A, Deveber G, Gunraj C, Chen R. Cortical excitability and interhemispheric inhibition after subcortical pediatric stroke: plastic organization and effects of rTMS. Clin Neurophysiol. 2010 Nov;121(11):1922-9. doi: 10.1016/j.clinph.2010.04.021. — View Citation
Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul. 2015 Jan-Feb;8(1):76-87. doi: 10.1016/j.brs.2014.10.012. Epub 2014 Oct 28. Review. — View Citation
Lazzari RD, Politti F, Santos CA, Dumont AJ, Rezende FL, Grecco LA, Braun Ferreira LA, Oliveira CS. Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: a randomized, controlled, double-blind trial. J Phys Ther Sci. 2015 Mar;27(3):763-8. doi: 10.1589/jpts.27.763. Epub 2015 Mar 31. — View Citation
Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004 Mar;55(3):400-9. — View Citation
Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001 Nov 27;57(10):1899-901. — View Citation
Zewdie E, Damji O, Ciechanski P, Seeger T, Kirton A. Contralesional Corticomotor Neurophysiology in Hemiparetic Children With Perinatal Stroke. Neurorehabil Neural Repair. 2017 Mar;31(3):261-271. doi: 10.1177/1545968316680485. Epub 2016 Nov 24. — View Citation
* Note: There are 21 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in Motor Evoked Potential Amplitude | Motor evoked potential is a measure of cortical excitability using transcranial magnetic stimulation. MEP is measured as the amplitude of electrical activity from finger muscles. Outcome is reported as the percent change in MEP amplitude from pre-intervention to immediately post-intervention. | approximately 5 minutes | |
Secondary | Change in Movement Accuracy | Finger tracking was measured using an instrumented goniometer that recorded finger position, which was then used to control a cursor on a laptop computer. The outcome is reported as the percent change in accuracy from pre-intervention to 60 minutes post-intervention. | Approximately 1 hours |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05317234 -
Genetic Predisposition in Cerebral Palsy
|
N/A | |
Recruiting |
NCT05576948 -
Natural History of Cerebral Palsy Prospective Study
|
||
Completed |
NCT04119063 -
Evaluating Wearable Robotic Assistance on Gait
|
Early Phase 1 | |
Completed |
NCT03264339 -
The Small Step Program - Early Intervention for Children With High Risk of Developing Cerebral Palsy
|
N/A | |
Completed |
NCT05551364 -
Usability and Effectiveness of the ATLAS2030 Exoskeleton in Children With Cerebral Palsy
|
N/A | |
Completed |
NCT03902886 -
Independent Walking Onset of Children With Cerebral Palsy
|
||
Recruiting |
NCT05571033 -
Operant Conditioning of the Soleus Stretch Reflex in Adults With Cerebral Palsy
|
N/A | |
Not yet recruiting |
NCT04081675 -
Compliance in Children With Cerebral Palsy Supplied With AFOs
|
||
Completed |
NCT02167022 -
Intense Physiotherapies to Improve Function in Young Children With Cerebral Palsy
|
N/A | |
Completed |
NCT04012125 -
The Effect of Flexible Thoracolumbar Brace on Scoliosis in Cerebral Palsy
|
N/A | |
Enrolling by invitation |
NCT05619211 -
Piloting Movement-to-Music With Arm-based Sprint-Intensity Interval Training Among Children With Physical Disabilities
|
Phase 1 | |
Completed |
NCT04489498 -
Comparison of Somatometric Characteristics Between Cerebral Palsy and Normal Children, Cross-sectional, Multi Center Study
|
||
Completed |
NCT03677193 -
Biofeedback-enhanced Interactive Computer-play for Youth With Cerebral Palsy
|
N/A | |
Recruiting |
NCT06450158 -
Robot-assisted Training in Children With CP
|
N/A | |
Completed |
NCT04093180 -
Intensive Neurorehabilitation for Cerebral Palsy
|
N/A | |
Completed |
NCT02909127 -
The Pediatric Eating Assessment Tool
|
||
Not yet recruiting |
NCT06377982 -
Human Umbilical Cord Blood Infusion in Patients With Cerebral Palsy
|
Phase 1 | |
Not yet recruiting |
NCT06007885 -
Examining Capacity Building of Youth With Physical Disabilities to Pursue Participation Following the PREP Intervention.
|
N/A | |
Not yet recruiting |
NCT03183427 -
Corpus Callosum Size in Patients With Pineal Cyst
|
N/A | |
Active, not recruiting |
NCT03078621 -
Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Cerebral Palsy
|
Phase 1/Phase 2 |