View clinical trials related to Cerebellar Disease.
Filter by:This study will examine the role of certain areas of the brain in blepharospasm, a type of dystonia (abnormality of movement and muscle tone) that causes unwanted or uncontrollable blinking or closing of the eyelids. The study will compare brain activity in healthy volunteers and in people with blepharospasm to find differences in the brain that may lead to better treatments for dystonia. Healthy volunteers and people with blepharospasm who are 18 years of age and older may be eligible for this study. All candidates are screened with a medical history. People with blepharospasm also have a physical examination and blepharospasm rating. Participants undergo transcranial magnetic stimulation (TMS) and electromyography (EMG) in two 4-hour sessions, separated by 1 to 7 days. TMS A wire coil is held on the subject s scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. The subject hears a click and may feel a pulling sensation on the skin under the coil. There may be a twitch in muscles of the face, arm or leg. During the stimulation, subjects may be asked to tense certain muscles slightly or perform other simple actions. Repetitive TMS involves repeated magnetic pulses delivered in short bursts of impulses. Subjects receive 60 pulses per minute over 15 minutes. EMG Surface EMG is done during TMS to measure the electrical activity of muscles. For this test, electrodes (small metal disks) are filled with a conductive gel and taped to the skin of the face.
Imaging studies of the brain have revealed the different areas involved in the processes of learning and reasoning. However, the specific role these regions play in these processes, or if stimulating these areas can improve these processes is unknown. Researchers would like to use repetitive transcranial stimulation (rTMS) to better understand the roles of individual brain regions on the processes of learning and reasoning. Repetitive transcranial magnetic stimulation (rTMS) involves the placement of a cooled electromagnet with a figure-eight coil on the patient's scalp, and rapidly turning on and off the magnetic flux. This permits non-invasive, relatively localized stimulation of the surface of the brain (cerebral cortex). The effect of magnetic stimulation varies, depending upon the location, intensity and frequency of the magnetic pulses. The purpose of this study is to use rTMS to help determine the roles of different brain regions in the development of implicit learning of motor sequences and analogic reasoning. In addition, researchers hope to evaluate if stimulation of these regions speeds up the process of learning or analogic reasoning.