View clinical trials related to Central Nervous System Neoplasms.
Filter by:RATIONALE: Learning whether temozolomide changes semen or sperm in patients with brain tumors may help doctors learn about the long-term effects of treatment and plan the best treatment. PURPOSE: This clinical trial is studying changes in semen or sperm caused by temozolomide in patients with newly diagnosed, progressive, or recurrent primary malignant brain tumors.
RATIONALE: Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase II trial is studying how well temozolomide works in treating patients with recurrent glioblastoma multiforme or other malignant glioma.
RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Tamoxifen may make tumor cells more sensitive to radiation therapy and chemotherapy. Giving radiation therapy together with temozolomide, tamoxifen, and carboplatin may kill more tumor cells. PURPOSE: This phase II trial is studying the side effects and how well giving radiation therapy together with temozolomide, tamoxifen, and carboplatin works in treating patients with malignant gliomas.
RATIONALE: Drugs used in chemotherapy, such as hydroxychloroquine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving hydroxychloroquine together with temozolomide and radiation therapy may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of hydroxychloroquine when given together with radiation therapy and temozolomide and to see how well they work in treating patients with newly diagnosed glioblastoma multiforme.
RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with temozolomide may kill more tumor cells. It is not yet known whether radiation therapy and temozolomide are more effective than radiation therapy alone in treating glioblastoma multiforme. PURPOSE: This randomized phase III trial is studying radiation therapy and temozolomide to see how well they work compared with radiation therapy alone in treating patients with newly diagnosed glioblastoma multiforme.
- Primary Objective will be to evaluate the use of Ga-67 citrate as an alternative radiopharmaceutical for CSF imaging. - Secondary Objective will be to evaluate the biodistribution, pharmacokinetics and radiation dosimetry of In 111 DTPA and gallium-67 after intrathecal injection during remission of leptomeningeal metastasis (LM) and during LM occurrence, remission and recurrence.
This phase I trial is studying the side effects and best dose of vandetanib when given together with radiation therapy in treating young patients with newly diagnosed diffuse brain stem glioma.
RATIONALE: Studying samples of blood in the laboratory from patients receiving temozolomide may help doctors learn how temozolomide works in the body. It may also help doctors learn more about how a patient's genes may affect the risk of developing thrombocytopenia. PURPOSE: This clinical trial is studying the pharmacokinetics in patients with newly diagnosed high-grade glioma receiving temozolomide and radiation therapy.
RATIONALE: Drugs used in chemotherapy, such as cisplatin, ifosfamide, and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Colony-stimulating factors, such as pegfilgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of chemotherapy. PURPOSE: This phase II trial is studying the side effects and how well giving combination chemotherapy together with pegfilgrastim works in treating patients with previously untreated germ cell tumors.
RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs, such as lithium, may protect normal cells from the side effects of radiation therapy. Giving lithium together with radiation therapy may allow a higher dose of radiation therapy to be given so that more tumor cells are killed. PURPOSE: This phase I trial is studying the side effects and best dose of lithium when given together with whole-brain radiation therapy in treating patients with brain metastases from primary cancer outside the brain.