Clinical Trials Logo

Central Nervous System Neoplasms clinical trials

View clinical trials related to Central Nervous System Neoplasms.

Filter by:

NCT ID: NCT02323880 Active, not recruiting - Malignant Glioma Clinical Trials

Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas

Start date: October 30, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

NCT ID: NCT02291822 Completed - Clinical trials for Central Nervous System Neoplasms

Retrospective Study of MRI in Pediatric Patients

Start date: November 2014
Phase: N/A
Study type: Observational

Collection of already existing data and images for patients < 2 years of age having MultiHance administration for a MRI of the brain or spine. MR Images will be reviewed during a prospectively designed blinded reading of the images.

NCT ID: NCT02255461 Terminated - Clinical trials for Recurrent Childhood Medulloblastoma

Palbociclib Isethionate in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors

Start date: December 8, 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of palbociclib isethionate in treating younger patients with central nervous system tumors that have grown, come back, or not responded to treatment. Palbociclib isethionate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02116777 Completed - Clinical trials for Recurrent Malignant Solid Neoplasm

Talazoparib and Temozolomide in Treating Younger Patients With Refractory or Recurrent Malignancies

Start date: May 16, 2014
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of talazoparib and temozolomide and to see how well they work in treating younger patients with tumors that have not responded to previous treatment (refractory) or have come back (recurrent). Talazoparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving talazoparib together with temozolomide may work better in treating younger patients with refractory or recurrent malignancies.

NCT ID: NCT02100891 Completed - Neuroblastoma Clinical Trials

Phase 2 STIR Trial: Haploidentical Transplant and Donor Natural Killer Cells for Solid Tumors

STIR
Start date: March 20, 2013
Phase: Phase 2
Study type: Interventional

The investigators hypothesize that this Phase 2 cellular and adoptive immunotherapy study using human leukocyte antigen (HLA)-haploidentical hematopoietic cell transplantation (HCT) followed by an early, post-transplant infusion of donor natural killer (NK) cells on Day +7 will not only be well-tolerated in this heavily-treated population (safety), but will also provide a mechanism to treat high-risk solid tumors, leading to improved disease control rate (efficacy). Disease control rate is defined as the combination of complete (CR) and partial (PR) response and stable disease (SD). The investigators further propose that this infusion of donor NK cells will influence the development of particular NK and T cell subtypes which will provide immediate/long-term tumor surveillance, infectious monitoring, and durable engraftment. Patients with high-risk solid tumors (Ewings Sarcoma, Neuroblastoma and Rhabdomyosarcoma) who have either measurable or unmeasurable disease and have met eligibility will be enrolled on this trial for a goal enrollment of 20 patients over 4 years.

NCT ID: NCT02095353 Terminated - Clinical trials for Central Nervous System Neoplasms

Comparison of Contrast Agents for MRI Perfusion Analysis in Brain Tumor Patients

Start date: September 1, 2014
Phase:
Study type: Observational

This study will compare the use of two contrast agents to analyze blood flow characteristics of brain tumors.

NCT ID: NCT02095132 Completed - Clinical trials for Refractory Malignant Solid Neoplasm

Adavosertib and Irinotecan Hydrochloride in Treating Younger Patients With Relapsed or Refractory Solid Tumors

Start date: March 28, 2014
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of adavosertib and irinotecan hydrochloride in treating younger patients with solid tumors that have come back (relapsed) or that have not responded to standard therapy (refractory). Adavosertib and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02050243 Not yet recruiting - Clinical trials for Central Nervous System Tumor, Pediatric

The Use of 5-aminolevulinic Acid (ALA) as an Intraoperative Tumor Marker for Resection of Pediatric Central Nervous System (CNS) Tumors

5-ALA
Start date: February 2014
Phase: Phase 1/Phase 2
Study type: Interventional

Surgery is the cornerstone treatment of most pediatric CNS tumors, including astrocytomas, ependymomas, medulloblastomas, and many other pathologies. In most pediatric CNS tumors, the aim of surgery is maximal tumor resection, while preserving neurological function. Extent of tumor residual has been shown to be a major prognostic factor for progression free survival (PFS), and survival in several malignant and low-grade tumors such as medulloblastomas, ependymomas, and astrocytic tumors. 5-aminolevulinic acid (5-ALA) has been shown to be valuable in intraoperative marking of various cancers. Following oral admission, during surgery, the tumor tissue is illuminated by blue light. Tumor cells tend to metabolize 5-ALA to a porphyrin named protoporhyrin IX (PpIX). PpIX reacts with the blue light and emits a pinky color (- fluorescence). This enables the surgeon to better identify tumor cells and perform a more extensive resection. Over recent years, many studies have proven the efficacy using 5-ALA for resecting various intracranial and spinal tumors, thus achieving a better tumor control. In the suggested study, we propose using the same technique for various pediatric central nervous system tumors. We will focus on the correlation between various pathologies and the fluorescence, trying to deduce the role of 5-ALA in resection of specific pathologies. Also, we will study the safety of 5-ALA use in the pediatric population.

NCT ID: NCT02012699 Recruiting - Breast Cancer Clinical Trials

Integrated Cancer Repository for Cancer Research

iCaRe2
Start date: November 1, 2013
Phase:
Study type: Observational [Patient Registry]

The iCaRe2 is a multi-institutional resource created and maintained by the Fred & Pamela Buffett Cancer Center to collect and manage standardized, multi-dimensional, longitudinal data and biospecimens on consented adult cancer patients, high-risk individuals, and normal controls. The distinct characteristic of the iCaRe2 is its geographical coverage, with a significant percentage of small and rural hospitals and cancer centers. The iCaRe2 advances comprehensive studies of risk factors of cancer development and progression and enables the design of novel strategies for prevention, screening, early detection and personalized treatment of cancer. Centers with expertise in cancer epidemiology, genetics, biology, early detection, and patient care can collaborate by using the iCaRe2 as a platform for cohort and population studies.

NCT ID: NCT01985451 Active, not recruiting - Clinical trials for Central Nervous System Tumors

Pemetrexed and Temozolomide in Treating Patients With Relapsed Primary Central Nervous System Lymphoma (PCNSL)

Start date: March 2013
Phase: Phase 2
Study type: Interventional

In this trial, we will treat relapsed PCNSL with temozolomide, pemetrexed. Our objective was to assess our treatment strategies' availability based on response rates, progression-free survival (PFS), median PFS, and toxicity.