View clinical trials related to Castration-Resistant Prostate Cancer.
Filter by:This phase Ib trial studies the dose and schedule of 177Lu-PSMA-617 and pembrolizumab in treating patients with castration-resistant prostate cancer that has spread to other places in the body. 177Lu-PSMA-617 carries a radioactive component which attached to the prostate specific membrane antigen (PSMA) receptor found on tumor cells. Its radiation component destroys the tumor cell. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body?s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving 177Lu-PSMA-617 and pembrolizumab may work better at treating prostate cancer.
The purpose of this study is to evaluate the effectiveness of niraparib in combination with abiraterone acetate plus prednisone (AAP) compared to AAP and placebo.
This is an open-labeled, single-arm, interventional pilot study. It is being done to determine the feasibility of the administration of transdermal testosterone alternating with enzalutamide, as well as the safety and efficacy.
This is a prospective biomarker study of patients with metastatic castration-resistant prostate cancer (mCRPC) undergoing sequential treatment with docetaxel and enzalutamide. The participants will undergo serial pre- and post-therapy blood collection for biomarker analysis as part of the primary objective of the study. The primary goal of this study is to evaluate the association of the AR-V7 status and androgen receptor (AR) gene alterations with PSA response to docetaxel and enzalutamide.
This phase II trial studies how well berzosertib (M6620) and carboplatin with or without docetaxel works in treating patients with castration-resistant prostate cancer that has spread to other places in the body (metastatic). M6620 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as carboplatin and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving M6620, carboplatin and docetaxel may work better in treating patients with metastatic castration-resistant prostate cancer compared to carboplatin and docetaxel alone.
This phase II trial studies the how well apalutamide with or without stereotactic body radiation therapy work in treating participants with castration-resistant prostate cancer. Testosterone can cause the growth of prostate cancer cells. Hormone therapy using apalutamide may fight prostate cancer by blocking the use of testosterone by the tumor cells. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. It is not yet known whether giving apalutamide with or without stereotactic body radiation therapy works better in treating participants with castration-resistant cancer.
This phase II trial studies how well docetaxel with carboplatin followed by rucaparib camsylate works in treating patients with metastatic castration resistant prostate cancer (spread outside of prostate and resistant to testosterone suppression) with homologous recombination DNA repair deficiency. Chemotherapy drugs, such as docetaxel and carboplatin, work to stop the growth of cancer cells, by stopping them from dividing or spreading. Rucaparib camsylate may stop the growth of tumor cells with defects in the ability to repair mistakes in DNA by forcing additional errors so that the cancer cells cannot overcome the number of errors and will then die. Giving induction docetaxel and carboplatin followed by maintenance rucaparib camsylate may work better in treating patients with castration resistant prostate cancer.
This randomized phase II trial studies how well abiraterone acetate and antiandrogen therapy, with or without cabazitaxel and prednisone, work in treating patients with castration-resistant prostate cancer previously treated with docetaxel that has spread to other parts of the body. Androgens can cause the growth of prostate cancer cells. Hormone therapy using abiraterone acetate and antiandrogen therapy may fight prostate cancer by lowering and/or blocking the use of androgens by the tumor cells. Drugs used in chemotherapy, such as cabazitaxel and prednisone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving abiraterone acetate and antiandrogen therapy with or without cabazitaxel and prednisone may help kill more tumor cells.
Identification of biomarkers (Circulating Tumor Cells (CTC), free DNA, Stem Cells and EMT-related antigens) that may be predictive of outcome of activity of cabazitaxel treatment in castration-resistant prostate cancer.
This phase II trial studies how well apalutamide and abiraterone acetate work in treating participants with castration resistant prostate cancer that has spread to other places in the body (metastatic). Abiraterone acetate and apalutamide may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunosuppressive therapy, such as prednisone, is used to decrease the body's immune response and may improve bone marrow function. Giving apalutamide, abiraterone acetate, and prednisone may work better in treating participants with castration resistant prostate cancer.