View clinical trials related to Cardiomyopathy, Dilated.
Filter by:In non-ischemic dilated cardiomyopathy (NIDCM), left ventricular reverse remodeling (LVRR) can be achieved through guideline-directed medical therapy (GDMT). LVRR is defined as an increase in left ventricular ejection fraction (LVEF) of more than 10% in heart failure patients with a baseline LVEF of 40% or less, or an increase in LVEF of more than 40% at follow-up, which is classified as heart failure with improved EF (HFimpEF) according to current guidelines. Several studies have examined the prevalence and predictors of LVRR in NIDCM. However, there is a lack of research on LVRR in the context of contemporary pharmacotherapy. Studies have demonstrated the beneficial effects of ivabradine in heart failure with reduced ejection fraction (HFrEF), improving patients' prognosis. A sub-study of the SHIFT trial indicated that ivabradine may also contribute to cardiac remodeling reversal in patients with HFrEF. However, there is limited evidence exploring the relationship between ivabradine and LVRR, particularly in the context of NIDCM. Consequently, this study is a retrospective, multi-center cohort study aiming to evaluate the impact of ivabradine on LVRR in patients with NIDCM in the current era of medical therapy. Furthermore, by conducting this study, we aim to gain insights into the potential role of ivabradine in promoting LVRR in NIDCM patients receiving contemporary drug therapy.
Cardiac resynchronization therapy (CRT) with biventricular pacing (BiV) is the cornerstone treatment for heart failure patients with ventricular dyssynchrony. Recently, a new concept, conduction system pacing (CSP) with permanent pacing, including His bundle pacing and left bundle branch pacing, has been proposed as a potential alternative to conventional BiV-CRT. The prospective, randomized trial will compare echocardiographic, electrocardiographic, and clinical effects of CSP versus conventional BiV pacing in heart failure patients with reduced ejection fraction (LVEF ≤ 35%), sinus rhythm, and left bundle branch block. Patients will be randomized to either CSP or biventricular pacing study group and followed up for at least 6 months. The study will explore whether CSP is non-inferior to BiV pacing in echocardiographic, electrocardiographic, and clinical outcomes.
This is a non-randomized, prospective, multi-center Early Feasibility Study of the AccuCinch® Ventricular Restoration System in Patients with Prior Mitral Valve Intervention (PMVI) and Recurrent Mitral Regurgitation.
This is a non-randomized, prospective, multi-center Early Feasibility Study to evaluate the AccuCinch® Ventricular Restoration System in Patients with Heart Failure and Reduced Ejection Fraction (HFrEF).
The aims of the DCM Precision Medicine Study are to test the hypothesis that DCM has substantial genetic basis and to evaluate the effectiveness of a family communication intervention in improving the uptake and impact of family member clinical screening.
Heart failure (HF) is the common end-stage of different medical conditions. It is the only growing cardiovascular disease and its prognosis remains worse than that of many malignancies. The lack of evidence-based treatment for patients with diastolic HF (HFpEF) exemplifies that the current "one for all" therapy has to be advanced by an individualized approach. Inherited cardiomyopathies can serve as paradigmatic examples of different HF pathogenesis. Both gain- and loss-of-function mutations of the same gene cause disease, calling for disease-specific agonism or antagonism of this gene´s function. However, mutations alone do not predict the severity of cardiomyopathies nor therapy, because their impact on cardiac myocyte function is modified by numerous factors, including the genetic context. Today, patient-specific cardiac myocytes can be evaluated by the induced pluripotent stem cell (hiPSC) technology. Yet, unfolding the true potential of this technology requires robust, quantitative, high content assays. The researchers' recently developed method to generate 3D-engineered heart tissue (EHT) from hiPSC provides an automated, high content analysis of heart muscle function and the response to stressors in the dish. The aim of this project is to make the technology a clinically applicable test. Major steps are (i) in depths clinical phenotyping and genotyping of patients with cardiomyopathies or HFpEF, (ii) follow-up of the clinical course, (iii) generation of hiPSC lines (40 patients, 40 healthy controls), and (iv) quantitative assessment of hiPSC-EHT function under basal conditions and in response to pro-arrhythmic or cardio-active drugs and chronic afterload enhancement. The product of this study is an SOP-based assay with standard values for hiPSC-EHT function/stress responses from healthy volunteers and patients with different heart diseases. The project could change clinical practice and be a step towards individualized risk prediction and therapy of HF.
To determine the safety profile of CAP-1002 administered by multi-vessel intracoronary infusion in subjects with DCM. The study will further explore safety and exploratory efficacy endpoints of CAP-1002.
The objective of this extension study is to evaluate the safety and potential beneficial effects of the Algisyl-LVR™ device in patients with established heart failure secondary to a dilated cardiomyopathy. The results of this study will provide confirmatory evidence of the long-term safety and effectiveness of the Algisyl-LVR in patients with established heart failure.
Cardiomyopathy is a disease of the heart muscle. It is rare, but it can be serious. Cardiomyopathy in children can result in death, disability, heart transplantation or serious heart rhythm disorders. Natural substances in the blood called cardiac biomarkers can be measured in the laboratory and could be a less invasive way (compared to echocardiograms or MRIs) to detect heart dysfunction in children with cardiomyopathy. Little is known about how useful and valid cardiac biomarkers are in the diagnosis and determination of the symptoms in children with cardiomyopathy. The long-term goal of this project is to study how helpful measuring cardiac biomarkers in children with cardiomyopathy is to their doctors in managing the care of these patients as well as improving their overall health. Measures of these cardiac biomarkers could help doctors in determining how best to care for a child with cardiomyopathy, including when to consider heart transplantation as a treatment option.
Despite the recent advances in medical and surgical treatment, heart failure resulting from ischemic cardiomyopathy (ICM) remains the leading cause of cardiovascular mortality. Ischemic dilated cardiomyopathy(ICM) is defined as abnormally enlarged left ventricular (LV) cavity with documented poor LV function as a result of severe coronary artery disease (CAD). LV remodelling which is inevitable after an infarct has been postulated to contribute largely to the poor outcome of patients with ICM, therefore prevention of LV remodelling is the goal for the treatment in patients with severe CAD. Cell therapy represents a novel therapeutic strategy for treating cardiac diseases including severe CAD and heart failure. A type of stem cells known as mesenchymal stem cells(MSCs)can be isolated from bone marrow.This study aims to test the differentiation potential and therapeutic capacity of MSC from severe CAD patients after intracoronary implantation in an ischemic myocardial environment in Malaysian population.